Before this change, you got to cast a symbol to DefinedRegular and then
call isCOMDAT() to determine if a given symbol is a COMDAT symbol.
Now you can just use isa<DefinedCOMDAT>().
As to the class definition of DefinedCOMDAT, I could remove duplicate
code from DefinedRegular and DefinedCOMDAT by introducing another base
class for them, but I chose to not do that to keep the class hierarchy
shallow. This amount of code duplication doesn't worth to define a new
class.
llvm-svn: 240319
DLLs are usually resolved at process startup, but you can
delay-load them by passing /delayload option to the linker.
If a /delayload is specified, the linker has to create data
which is similar to regular import table.
One notable difference is that the pointers in a delay-load
import table are originally pointing to thunks that resolves
themselves. Each thunk loads a DLL, resolve its name, and then
overwrites the pointer with the result so that subsequent
function calls directly call a desired function. The linker
has to emit thunks.
llvm-svn: 240250
.pdata section contains a list of triplets of function start address,
function end address and its unwind information. Linkers have to
sort section contents by function start address and set the section
address to the file header (so that runtime is able to find it and
do binary search.)
This change seems to resolve all but one remaining test failures in
check{,-clang,-lld} when building the entire stuff with clang-cl and
lld-link.
llvm-svn: 240231
This is a case that one mistake caused a very mysterious bug.
I made a mistake to calculate addresses of common symbols, so
each common symbol pointed not to the beginning of its location
but to the end of its location. (Ouch!)
Common symbols are aligned on 16 byte boundaries. If a common
symbol is small enough to fit between the end of its real
location and whatever comes next, this bug didn't cause any harm.
However, if a common symbol is larger than that, its memory
naturally overlapped with other symbols. That means some
uninitialized variables accidentally shared memory. Because
totally unrelated memory writes mutated other varaibles, it was
hard to debug.
It's surprising that LLD was able to link itself and all LLD
tests except gunit tests passed with this nasty bug.
With this fix, the new COFF linker is able to pass all tests
for LLVM, Clang and LLD if I use MSVC cl.exe as a compiler.
Only three tests are failing when used with clang-cl.
llvm-svn: 240216
This avoids undefined behaviour caused by an out-of-range access if the
vector is empty, which can happen if an object file's directive section
contains only whitespace.
llvm-svn: 240183
getName() does strlen() on the symbol table, so it's not very fast.
It's not as bad as r239332 because the number of symbols exported
from archive files are fewer than object files, and they are usually
shorter, though.
llvm-svn: 240178
In this linker model, adding an undefined symbol may trigger chain
reactions. It may trigger a Lazy symbol to read a new file.
A new file may contain a directive section, which may contain various
command line options.
Previously, we didn't handle chain reactions well. We visited /include'd
symbols only once, so newly-added /include symbols were ignored.
This patch fixes that bug.
Now, the symbol table is versioned; every time the symbol table is
updated, the version number is incremented. We repeat adding undefined
symbols until the version number does not change. It is guaranteed to
converge -- the number of undefined symbol in the system is finite,
and adding the same undefined symbol more than once is basically no-op.
llvm-svn: 240177
None of the implementations replace the SimpleFile with some other file,
they just modify the SimpleFile in-place, so a direct reference to the
file is sufficient.
llvm-svn: 240167
Alternatename option is in the form of /alternatename:<from>=<to>.
It's effect is to resolve <from> as <to> if <from> is still undefined
at end of name resolution.
If <from> is not undefined but completely a new symbol, alternatename
shouldn't do anything. Previously, it introduced a new undefined
symbol for <from>, which resulted in undefined symbol error.
llvm-svn: 240161
We don't want to insert a new symbol to the symbol table while reading
a .drectve section because it's going to be too complicated.
That we are reading a directive section means that we are currently
reading some object file. Adding a new undefined symbol to the symbol
table can trigger a library file to read a new file, so it would make
the call stack too deep.
In this patch, I add new symbol names to a list to resolve them later.
llvm-svn: 240076
Alternatename option is in the form of /alternatename:<from>=<to>.
It is an error if there are two options having the same <from> but
different <to>. It is *not* an error if both are the same.
llvm-svn: 240075
We skip unknown options in the command line with a warning message
being printed out, but we shouldn't do that for .drectve section.
The section is not visible to the user. We should handle unknown
options as an error.
llvm-svn: 240067
The linker has to create an XML file for each executable.
This patch supports that feature.
You can optionally embed an XML file to an executable as .rsrc
section. If you choose to do that (by passing /manifest:embed
option), the linker has to create a textual resource file
containing an XML file, compile that using rc.exe to a binary
resource file, conver that resource file to a COFF file using
cvtres.exe, and then link that COFF file. This patch implements
that feature too.
llvm-svn: 239978
Common symbols will be handled in a separate patch because it seems
Hexagon redefines the notion of common symbol, which I'm not (yet)
very familiar with.
llvm-svn: 239951
On Windows, we have to create a .lib file for each .dll.
When linking against DLLs, the linker doesn't use the DLL files,
but instead read a list of dllexported symbols from corresponding
lib files.
A library file containing descriptors of a DLL is called an
import library file.
lib.exe has a feature to create an import library file from a
module-definition file. In this patch, we create a module-definition
file and pass that to lib.exe.
We eventually want to create an import library file by ourselves
to eliminate dependency to lib.exe. For now, we just use the MSVC
tool.
llvm-svn: 239937