Commit Graph

6060 Commits

Author SHA1 Message Date
Chandler Carruth 77b6e47f74 [PM] Improve the API and comments around the analysis manager proxies.
These are really handles that ensure the analyses get cleared at
appropriate places, and as such copying doesn't really make sense.
Instead, they should look more like unique ownership objects. Make that
the case.

Relatedly, if you create a temporary of one and move out of it
its destructor shouldn't actually clear anything. I don't think there is
any code that can trigger this currently, but it seems like a more
robust implementation.

If folks want, I can add a unittest that forces this to be exercised,
but that seems somewhat pointless -- whether a temporary is ever created
in the innards of AnalysisManager is not really something we should be
adding a reliance on, but I didn't want to leave a timebomb in the code
here.

If anyone has a cleaner way to represent this, I'm all ears, but
I wanted to assure myself that this wasn't in fact responsible for
another bug I'm chasing down (it wasn't) and figured I'd commit that.

llvm-svn: 261594
2016-02-23 00:05:00 +00:00
Krzysztof Parzyszek e261e5ac47 More detailed dependence test between volatile and non-volatile accesses
Differential Revision: http://reviews.llvm.org/D16857

llvm-svn: 261589
2016-02-22 23:07:43 +00:00
Sanjoy Das 5079f6260f [ConstantRange] Rename a method and add more doc
Rename makeNoWrapRegion to a more obvious makeGuaranteedNoWrapRegion,
and add a comment about the counter-intuitive aspects of the function.
This is to help prevent cases like PR26628.

llvm-svn: 261532
2016-02-22 16:13:02 +00:00
Duncan P. N. Exon Smith e9bc579c37 ADT: Remove == and != comparisons between ilist iterators and pointers
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.

Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators.  (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)

There should be NFC here.

llvm-svn: 261498
2016-02-21 20:39:50 +00:00
Tobias Grosser 934fcf4dc6 ScalerEvolution: Only erase temporary values if they actually have been added
This addresses post-review comments from Sanjoy Das for r261485.

llvm-svn: 261486
2016-02-21 18:50:09 +00:00
Tobias Grosser 11332e5ec5 ScalarEvolution: Do not keep temporary PHI values in ValueExprMap
Before this patch simplified SCEV expressions for PHI nodes were only returned
the very first time getSCEV() was called, but later calls to getSCEV always
returned the non-simplified value, which had "temporarily" been stored in the
ValueExprMap, but was never removed and consequently blocked the caching of the
simplified PHI expression.

llvm-svn: 261485
2016-02-21 17:42:10 +00:00
Joerg Sonnenberger 36894dcfed When MemoryDependenceAnalysis hits a CFG with many transparent blocks,
the algorithm easily degrades into quadratic memory and time complexity.
The easiest example is a long chain of BBs that don't otherwise use a
location. The caching will add an entry for every intermediate block and
limiting the number of results doesn't help as no results are produced
until a definition is found.

Introduce a limit similar to the existing instructions-per-block limit.
This limit counts the total number of blocks checked. If the limit is
reached, entries are considered unknown. The initial value is 1000,
which avoids regressions for normal sized functions while still
limiting edge cases to reasnable memory consumption and execution time.

Differential Revision: http://reviews.llvm.org/D16123

llvm-svn: 261430
2016-02-20 11:24:44 +00:00
Benjamin Kramer 2337c1fe13 [LVI] Move ConstantRanges instead of copying.
No functional change intended. Copying small (<= 64 bits) APInts isn't
expensive but bloats code by generating the slow path everywhere. Moving
doesn't care about the size of the value.

llvm-svn: 261426
2016-02-20 10:40:34 +00:00
Chandler Carruth 342c671b66 [PM/AA] Wire up CFLAA to the new pass manager fully, and port one of its
tests over to exercise this code.

This uncovered a few missing bits here and there in the analysis, but
nothing interesting.

llvm-svn: 261404
2016-02-20 03:52:02 +00:00
Chandler Carruth 4f846a5f15 [PM/AA] Port alias analysis evaluator to the new pass manager, and use
it to actually test the new pass manager AA wiring.

This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.

Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.

Differential Revision: http://reviews.llvm.org/D17372

llvm-svn: 261403
2016-02-20 03:46:03 +00:00
Sanjoy Das 807d33da96 [SCEV] Don't spell `SCEV *` variables as `Scev`; NFC
It reads odd since most other places name a `SCEV *` as `S`.  Pure
renaming change.

llvm-svn: 261393
2016-02-20 01:44:10 +00:00
Sanjoy Das c42f7cc3f8 [SCEV] Don't use std::make_pair; NFC
`{A, B}` reads cleaner than `std::make_pair(A, B)`.

llvm-svn: 261392
2016-02-20 01:35:56 +00:00
Richard Trieu 7a08381403 Remove uses of builtin comma operator.
Cleanup for upcoming Clang warning -Wcomma.  No functionality change intended.

llvm-svn: 261270
2016-02-18 22:09:30 +00:00
Philip Reames bd09e86f82 [CaptureTracking] Support atomicrmw and cmpxchg
These atomic operations are conceptually both a load and store from the same location. As such, we can treat them as the most conservative of those two components which in practice, means we can treat them like stores. An cmpxchg or atomicrmw captures the values, but not the locations accessed.

Note: We can probably be more aggressive about the comparison value in an cmpxhg since to have it be in memory, it must already be captured, but I figured it was better to avoid that for the moment.

Note 2: It turns out that since we don't actually support cmpxchg of pointer type, writing a negative test is impossible.

Differential Revision: http://reviews.llvm.org/D17400

llvm-svn: 261245
2016-02-18 19:23:27 +00:00
Haicheng Wu 5cf99095bb [AliasSetTracker] Teach AliasSetTracker about MemSetInst
This change is to fix the problem discussed in
http://lists.llvm.org/pipermail/llvm-dev/2016-February/095446.html.

llvm-svn: 261052
2016-02-17 02:01:50 +00:00
Chandler Carruth e5944d97d8 [LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.

This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.

Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.

An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.

The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.

The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.

There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.

This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.

I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.

Many thanks to the careful review by Sanjoy Das!

Differential Revision: http://reviews.llvm.org/D16802

llvm-svn: 261040
2016-02-17 00:18:16 +00:00
Philip Reames 845435c86a Revert 260705, it appears to be causing pr26628
The root issue appears to be a confusion around what makeNoWrapRegion actually does.   It seems likely we need two versions of this function with slightly different semantics.

llvm-svn: 260981
2016-02-16 17:14:30 +00:00
Junmo Park 6ebdc14cf1 [SCEVExpander] Make findExistingExpansion smarter
Summary:
Extending findExistingExpansion can use existing value in ExprValueMap.
This patch gives 0.3~0.5% performance improvements on 
benchmarks(test-suite, spec2000, spec2006, commercial benchmark)
   
Reviewers: mzolotukhin, sanjoy, zzheng

Differential Revision: http://reviews.llvm.org/D15559

llvm-svn: 260938
2016-02-16 06:46:58 +00:00
Chandler Carruth 6f5770b10f [PM/AA] Actually wire the AAManager I built for the new pass manager
into the new pass manager and fix the latent bugs there.

This lets everything live together nicely, but it isn't really useful
yet. I never finished wiring the AA layer up for the new pass manager,
and so subsequent patches will change this to do that wiring and get AA
stuff more fully integrated into the new pass manager. Turns out this is
necessary even to get functionattrs ported over. =]

llvm-svn: 260836
2016-02-13 23:32:00 +00:00
Benjamin Kramer 8f59adb217 [ConstantFolding] Reduce APInt and APFloat copying.
llvm-svn: 260826
2016-02-13 16:54:14 +00:00
Justin Lebar 144c5a6c15 Add convergent property to CodeMetrics.
Summary: No functional changes.

Reviewers: jingyue, arsenm

Subscribers: arsenm, llvm-commits

Differential Revision: http://reviews.llvm.org/D17126

llvm-svn: 260728
2016-02-12 21:01:31 +00:00
Philip Reames 2b9100dfbd [LVI] Exploit nsw/nuw when computing constant ranges
As the title says. Modelled after similar code in SCEV.

This is useful when analysing induction variables in loops which have been canonicalized by other passes. I wrote the tests as non-loops specifically to avoid the generality introduced in http://reviews.llvm.org/D17174. While that can handle many induction variables without *needing* to exploit nsw, there's no reason not to use it if we've already proven it.

Differential Revision: http://reviews.llvm.org/D17177

llvm-svn: 260705
2016-02-12 19:05:16 +00:00
Philip Reames 854a84c0b0 [LVI] Improve select handling to use condition
This patches teaches LVI to recognize clamp idioms (e.g. select(a > 5, a, 5) will always produce something greater than 5.

The tests end up being somewhat simplistic because trying to exercise the case I actually care about (a loop with a range check on a clamped secondary induction variable) ends up tripping across a couple of other imprecisions in the analysis. Ah, the joys of LVI...

Differential Revision: http://reviews.llvm.org/D16827

llvm-svn: 260627
2016-02-12 00:09:18 +00:00
Artur Pilipenko 66d6d3eb2d Make context-sensitive isDereferenceable queries in isSafeToLoadUnconditionally
This is a part of the refactoring to unify isSafeToLoadUnconditionally and isDereferenceablePointer functions. In the subsequent change isSafeToSpeculativelyExecute will be modified to use isSafeToLoadUnconditionally instead of isDereferenceableAndAlignedPointer.   

Reviewed By: reames

Differential Revision: http://reviews.llvm.org/D16227

llvm-svn: 260520
2016-02-11 13:42:59 +00:00
Philip Reames bb781b46e2 [LVI] Handle constants defensively
There's nothing preventing callers of LVI from asking for lattice values representing a Constant.  In fact, given that several callers are walking back through PHI nodes and trying to simplify predicates, such queries are actually quite common.  This is mostly harmless today, but we start volatiling assertions if we add new calls to getBlockValue in otherwise reasonable places.

Note that this change is not NFC.  Specifically:
1) The result returned through getValueAt will now be more precise.  In principle, this could trigger any latent infinite optimization loops in callers, but in practice, we're unlikely to see this.
2) The result returned through getBlockValueAt is potentially weakened for non-constants that were previously queried.  With the old code, you had the possibility that a later query might bypass the cache and discover some information the original query did not.  I can't find a scenario which actually causes this to happen, but it was in principle possible.  On the other hand, this may end up reducing compile time when the same value is queried repeatedly.  

llvm-svn: 260439
2016-02-10 21:46:32 +00:00
Sanjoy Das ef8ed0c0db [MemoryBuiltins] Fix an issue with hasNoAliasAttr
Summary:
`hasNoAliasAttr` is buggy: it checks to see if the called function has
a `noalias` attribute, which is incorrect since functions are not even
allowed to have the `noalias` attribute.  The comment on its only
caller, `llvm::isNoAliasFn`, makes it pretty clear that the intention
to do the `noalias` check on the return value, and not the callee.

Unfortunately I couldn't find a way to test this upstream -- fixing
this does not change the observable behavior of any of the passes that
use this.  This is not very surprising, since `noalias` does not tell
anything about the contents of the allocated memory (so, e.g., you
still cannot fold loads).  I'll be happy to be proven wrong though.

Reviewers: chandlerc, reames

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D17037

llvm-svn: 260298
2016-02-09 21:54:18 +00:00
Sanjoy Das ca2edc7ad5 [GMR/OperandBundles] Teach getModRefBehavior about operand bundles
In general, memory restrictions on a called function (e.g. readnone)
cannot be transferred to a CallSite that has operand bundles.  It is
possible to make this inference smarter, but lets fix the behavior to be
correct first.

llvm-svn: 260193
2016-02-09 02:31:47 +00:00
Sanjoy Das 1c481f50d2 Add an "addUsedAAAnalyses" helper function
Summary:
Passes that call `getAnalysisIfAvailable<T>` also need to call
`addUsedIfAvailable<T>` in `getAnalysisUsage` to indicate to the
legacy pass manager that it uses `T`.  This contract was being
violated by passes that used `createLegacyPMAAResults`.  This change
fixes this by exposing a helper in AliasAnalysis.h,
`addUsedAAAnalyses`, that is complementary to createLegacyPMAAResults
and does the right thing when called from `getAnalysisUsage`.

Reviewers: chandlerc

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D17010

llvm-svn: 260183
2016-02-09 01:21:57 +00:00
Sanjoy Das 55394d929c Remove SCEVAAWrapperPass from createLegacyPMAAResults; NFC
Summary:
createLegacyPMAAResults is only called by CGSCC and Module passes, so
the call to getAnalysisIfAvailable<SCEVAAWrapperPass>() never
succeeds (SCEVAAWrapperPass is a function pass).

Reviewers: chandlerc

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D17009

llvm-svn: 260182
2016-02-09 01:21:50 +00:00
Wei Mi fc1cab305f This patch is to fix PR26529 caused by r259736.
IndVarSimplify assumes scAddRecExpr to be expanded in literal form instead of
canonical form by calling disableCanonicalMode after it creates SCEVExpander.
When CanonicalMode is disabled, SCEVExpander::expand should always return PHI
node for scAddRecExpr. r259736 broke the assumption.

The fix is to let SCEVExpander::expand skip the reuse Value logic if
CanonicalMode is false.

In addition, Besides IndVarSimplify, LSR pass also calls disableCanonicalMode
before doing rewrite. We can remove the original check of LSRMode in reuse
Value logic and use CanonicalMode instead.

llvm-svn: 260174
2016-02-09 00:07:08 +00:00
Michael Zolotukhin 1da4afdfc9 Factor out UnrollAnalyzer to Analysis, and add unit tests for it.
Summary:
Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests.
The change itself is supposed to be NFC, except adding a couple of tests.

I plan to add more tests as I add new functionality and find/fix bugs.

Reviewers: chandlerc, hfinkel, sanjoy

Subscribers: zzheng, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D16623

llvm-svn: 260169
2016-02-08 23:03:59 +00:00
Silviu Baranga ea63a7f512 [SCEV][LAA] Re-commit r260085 and r260086, this time with a fix for the memory
sanitizer issue. The PredicatedScalarEvolution's copy constructor
wasn't copying the Generation value, and was leaving it un-initialized.

Original commit message:

[SCEV][LAA] Add no wrap SCEV predicates and use use them to improve strided pointer detection

Summary:
This change adds no wrap SCEV predicates with:
  - support for runtime checking
  - support for expression rewriting:
      (sext ({x,+,y}) -> {sext(x),+,sext(y)}
      (zext ({x,+,y}) -> {zext(x),+,sext(y)}

Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.

We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.

Reviewers: mzolotukhin, sanjoy, anemet

Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel

Differential Revision: http://reviews.llvm.org/D15412

llvm-svn: 260112
2016-02-08 17:02:45 +00:00
Silviu Baranga 41b4973329 Revert r260086 and r260085. They have broken the memory
sanitizer bots.

llvm-svn: 260087
2016-02-08 11:56:15 +00:00
Silviu Baranga a35fadc7c4 [SCEV][LAA] Add no wrap SCEV predicates and use use them to improve strided pointer detection
Summary:
This change adds no wrap SCEV predicates with:
  - support for runtime checking
  - support for expression rewriting:
      (sext ({x,+,y}) -> {sext(x),+,sext(y)}
      (zext ({x,+,y}) -> {zext(x),+,sext(y)}

Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.

We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.

Reviewers: mzolotukhin, sanjoy, anemet

Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel

Differential Revision: http://reviews.llvm.org/D15412

llvm-svn: 260085
2016-02-08 10:45:50 +00:00
Hans Wennborg 00ab73dcb0 CallAnalyzer::analyzeCall: change the condition back to "Cost < Threshold"
In r252595, I inadvertently changed the condition to "Cost <= Threshold",
which caused a significant size regression in Chrome. This commit rectifies
that.

llvm-svn: 259915
2016-02-05 20:32:42 +00:00
Wei Mi 33e7bc0029 Fix a regression for r259736.
When SCEV expansion tries to reuse an existing value, it is needed to ensure
that using the Value at the InsertPt will not break LCSSA. The fix adds a
check that InsertPt is either inside the candidate Value's parent loop, or
the candidate Value's parent loop is nullptr.

llvm-svn: 259815
2016-02-04 19:17:33 +00:00
Sanjoy Das 76c48e0e70 [SCEV] Add boolean accessors for NSW, NUW and NW; NFC
llvm-svn: 259809
2016-02-04 18:21:54 +00:00
Wei Mi a49559befb [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

The original commit triggered regressions in Polly tests. The regressions
exposed two problems which have been fixed in current version.

1. Polly will generate a new function based on the old one. To generate an
instruction for the new function, it builds SCEV for the old instruction,
applies some tranformation on the SCEV generated, then expands the transformed
SCEV and insert the expanded value into new function. Because SCEV expansion
may reuse value cached in ExprValueMap, the value in old function may be
inserted into new function, which is wrong.
   In SCEVExpander::expand, there is a logic to check the cached value to
be used should dominate the insertion point. However, for the above
case, the check always passes. That is because the insertion point is
in a new function, which is unreachable from the old function. However
for unreachable node, DominatorTreeBase::dominates thinks it will be
dominated by any other node.
   The fix is to simply add a check that the cached value to be used in
expansion should be in the same function as the insertion point instruction.

2. When the SCEV is of scConstant type, expanding it directly is cheaper than
reusing a normal value cached. Although in the cached value set in ExprValueMap,
there is a Constant type value, but it is not easy to find it out -- the cached
Value set is not sorted according to the potential cost. Existing reuse logic
in SCEVExpander::expand simply chooses the first legal element from the cached
value set.
   The fix is that when the SCEV is of scConstant type, don't try the reuse
logic. simply expand it.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259736
2016-02-04 01:27:38 +00:00
David Majnemer fa8681e452 [ScalarEvolutionExpander] Simplify findInsertPointAfter
No functional change is intended.  The loop could only execute, at most,
once.

llvm-svn: 259701
2016-02-03 21:30:31 +00:00
Wei Mi 97de385868 Revert r259662, which caused regressions on polly tests.
llvm-svn: 259675
2016-02-03 18:05:57 +00:00
Wei Mi ed133978a0 [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259662
2016-02-03 17:05:12 +00:00
James Molloy 6e518a3b50 [DemandedBits] Revert r249687 due to PR26071
This regresses a test in LoopVectorize, so I'll need to go away and think about how to solve this in a way that isn't broken.

From the writeup in PR26071:

What's happening is that ComputeKnownZeroes is telling us that all bits except the LSB are zero. We're then deciding that only the LSB needs to be demanded from the icmp's inputs.

This is where we're wrong - we're assuming that after simplification the bits that were known zero will continue to be known zero. But they're not - during trivialization the upper bits get changed (because an XOR isn't shrunk), so the icmp fails.

The fault is in demandedbits - its contract does clearly state that a non-demanded bit may either be zero or one.

llvm-svn: 259649
2016-02-03 15:05:06 +00:00
Philip Reames b7571043f2 [LVI] Fix debug output
Due to staleness in a patch I committed yesterday, the debug output was reporting overdefined cases as being undefined.  Confusing to say the least.  The mistake appears to have only effected the debug output thankfully.

llvm-svn: 259594
2016-02-02 22:43:08 +00:00
Philip Reames ed8cd0d36e [LVI] Code motion only [NFC]
I introduced a declaration in 259583 to keep the diff readable.  This change just moves the definition up to remove the declaration again.

llvm-svn: 259585
2016-02-02 22:03:19 +00:00
Philip Reames d1f829d374 [LVI] Refactor to use newly introduced intersect utility
This patch uses the newly introduced 'intersect' utility (from 259461: [LVI] Introduce an intersect operation on lattice values) to simplify existing code in LVI.

While not introducing any new concepts, this change is probably not NFC.  The common 'intersect' function is more powerful that the ad-hoc implementations we'd had in a couple of places.  Given that, we may see optimizations triggering a bit more often.

llvm-svn: 259583
2016-02-02 21:57:37 +00:00
Eugene Zelenko ecefe5a81f Fix Clang-tidy readability-redundant-control-flow warnings; other minor fixes.
Differential revision: http://reviews.llvm.org/D16793

llvm-svn: 259539
2016-02-02 18:20:45 +00:00
Chandler Carruth a4499e9f73 [LCG] Build an edge abstraction for the LazyCallGraph and use it to
differentiate between indirect references to functions an direct calls.

This doesn't do a whole lot yet other than change the print out produced
by the analysis, but it lays the groundwork for a very major change I'm
working on next: teaching the call graph to actually be a call graph,
modeling *both* the indirect reference graph and the call graph
simultaneously. More details on that in the next patch though.

The rest of this is essentially a bunch of over-engineering that won't
be interesting until the next patch. But this also isolates essentially
all of the churn necessary to introduce the edge abstraction from the
very important behavior change necessary in order to separately model
the two graphs. So it should make review of the subsequent patch a bit
easier at the cost of making this patch seem poorly motivated. ;]

Differential Revision: http://reviews.llvm.org/D16038

llvm-svn: 259463
2016-02-02 03:57:13 +00:00
Philip Reames 44456b8963 [LVI] Introduce an intersect operation on lattice values
LVI has several separate sources of facts - edge local conditions, recursive queries, assumes, and control independent value facts - which all apply to the same value at the same location. The existing implementation was very conservative about exploiting all of these facts at once.

This change introduces an "intersect" function specifically to abstract the action of picking a good set of facts from all of the separate facts given. At the moment, this function is relatively simple (i.e. mostly just reuses the bits which were already there), but even the minor additions reveal the inherent power. For example, JumpThreading is now capable of doing an inductive proof that a particular value is always positive and removing a half range check.

I'm currently only using the new intersect function in one place. If folks are happy with the direction of the work, I plan on making a series of small changes without review to replace mergeIn with intersect at all the appropriate places.

Differential Revision: http://reviews.llvm.org/D14476

llvm-svn: 259461
2016-02-02 03:15:40 +00:00
Philip Reames 2c275cc686 [LVI] Fix a latent bug in getValueAt
This routine was returning Undefined for most queries.  This was utterly wrong.  Amusingly, we do not appear to have any callers of this which are actually trying to exploit unreachable code or this would have broken the world.

A better approach would be to explicit describe the intersection of facts.  That's blocked behind http://reviews.llvm.org/D14476 and I wanted to fix the current bug.

llvm-svn: 259446
2016-02-02 00:45:30 +00:00
Philip Reames 13f7324b86 [LVI] Remove overly tight assert from 259429
I'll submit a test case shortly which covers this, but it's causing clang self host problems in the builders so I wanted to get it removed.

llvm-svn: 259432
2016-02-01 23:21:11 +00:00