from its location. Initialize appropriately.
When implicitly creating a declaration of a class template specialization
after encountering the first reference to it, use the pattern class's
location instead of the location of the first reference.
llvm-svn: 81515
real. It turns out that we need to actually move all of the qualifiers
up to the array type itself, then recanonicalize the deduced template
argument type.
llvm-svn: 76788
Implement support for C++ Substitution Failure Is Not An Error
(SFINAE), which says that errors that occur during template argument
deduction do *not* produce diagnostics and do not necessarily make a
program ill-formed. Instead, template argument deduction silently
fails. This is currently implemented for template argument deduction
during matching of class template partial specializations, although
the mechanism will also apply to template argument deduction for
function templates. The scheme is simple:
- If we are in a template argument deduction context, any diagnostic
that is considered a SFINAE error (or warning) will be
suppressed. The error will be propagated up the call stack via the
normal means.
- By default, all warnings and errors are SFINAE errors. Add the
NoSFINAE class to a diagnostic in the .td file to make it a hard
error (e.g., for access-control violations).
Note that, to make this fully work, every place in Sema that emits an
error *and then immediately recovers* will need to check
Sema::isSFINAEContext() to determine whether it must immediately
return an error rather than recovering.
llvm-svn: 73332
partial specialization, substitute those template arguments back into
the template arguments of the class template partial specialization to
see if the results still match the original template arguments.
This code is more general than it needs to be, since we don't yet
diagnose C++ [temp.class.spec]p9. However, it's likely to be needed
for function templates.
llvm-svn: 73196
- Once we have deduced template arguments for a class template partial
specialization, we use exactly those template arguments for instantiating
the definition of the class template partial specialization.
- Added template argument deduction for non-type template parameters.
- Added template argument deduction for dependently-sized array types.
With these changes, we can now implement, e.g., the remove_reference
type trait. Also, Daniel's Ackermann template metaprogram now compiles
properly.
llvm-svn: 72909
deductions of the same template parameter are equivalent. This allows
us to implement the is_same type trait (!).
Also, move template argument deduction into its own file and update a
few build systems with this change (grrrr).
llvm-svn: 72819
we have the basics of declaring and storing class template partial
specializations, matching class template partial specializations at
instantiation time via (limited) template argument deduction, and
using the class template partial specialization's pattern for
instantiation.
This patch is enough to make a simple is_pointer type trait work, but
not much else.
llvm-svn: 72662