both MSP430InstrInfo and MSP430RegisterInfo. Remove unused member
variable StackAlign from MSP430RegisterInfo. Update constructors
accordingly.
llvm-svn: 211835
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
llvm-svn: 198438
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
llvm-svn: 181680
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
llvm-svn: 166168
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging. No functionality change.
llvm-svn: 159567
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
llvm-svn: 155902
Passes prior to instructon selection are now split into separate configurable stages.
Header dependencies are simplified.
The bulk of this diff is simply removal of the silly DisableVerify flags.
Sorry for the target header churn. Attempting to stabilize them.
llvm-svn: 149754
Allows command line overrides to be centralized in LLVMTargetMachine.cpp.
LLVMTargetMachine can intercept common passes and give precedence to command line overrides.
Allows adding "internal" target configuration options without touching TargetOptions.
Encapsulates the PassManager.
Provides a good point to initialize all CodeGen passes so that Pass ID's can be used in APIs.
Allows modifying the target configuration hooks without rebuilding the world.
llvm-svn: 149672
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
llvm-svn: 135580
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
Move EmitTargetCodeForMemcpy, EmitTargetCodeForMemset, and
EmitTargetCodeForMemmove out of TargetLowering and into
SelectionDAGInfo to exercise this.
llvm-svn: 103481
pair instead of from a virtual method on TargetMachine. This cuts the final
ties of TargetAsmInfo to TargetMachine, meaning that MC can now use
TargetAsmInfo.
llvm-svn: 78802
Module*.
Also, dropped uses of TargetMachine where unnecessary. The only target which
still takes a TargetMachine& is Mips, I would appreciate it if someone would
normalize this to match other targets.
llvm-svn: 77918
--- Reverse-merging r75799 into '.':
U test/Analysis/PointerTracking
U include/llvm/Target/TargetMachineRegistry.h
U include/llvm/Target/TargetMachine.h
U include/llvm/Target/TargetRegistry.h
U include/llvm/Target/TargetSelect.h
U tools/lto/LTOCodeGenerator.cpp
U tools/lto/LTOModule.cpp
U tools/llc/llc.cpp
U lib/Target/PowerPC/PPCTargetMachine.h
U lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
U lib/Target/PowerPC/PPCTargetMachine.cpp
U lib/Target/PowerPC/PPC.h
U lib/Target/ARM/ARMTargetMachine.cpp
U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
U lib/Target/ARM/ARMTargetMachine.h
U lib/Target/ARM/ARM.h
U lib/Target/XCore/XCoreTargetMachine.cpp
U lib/Target/XCore/XCoreTargetMachine.h
U lib/Target/PIC16/PIC16TargetMachine.cpp
U lib/Target/PIC16/PIC16TargetMachine.h
U lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp
U lib/Target/Alpha/AlphaTargetMachine.cpp
U lib/Target/Alpha/AlphaTargetMachine.h
U lib/Target/X86/X86TargetMachine.h
U lib/Target/X86/X86.h
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h
U lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h
U lib/Target/X86/X86TargetMachine.cpp
U lib/Target/MSP430/MSP430TargetMachine.cpp
U lib/Target/MSP430/MSP430TargetMachine.h
U lib/Target/CppBackend/CPPTargetMachine.h
U lib/Target/CppBackend/CPPBackend.cpp
U lib/Target/CBackend/CTargetMachine.h
U lib/Target/CBackend/CBackend.cpp
U lib/Target/TargetMachine.cpp
U lib/Target/IA64/IA64TargetMachine.cpp
U lib/Target/IA64/AsmPrinter/IA64AsmPrinter.cpp
U lib/Target/IA64/IA64TargetMachine.h
U lib/Target/IA64/IA64.h
U lib/Target/MSIL/MSILWriter.cpp
U lib/Target/CellSPU/SPUTargetMachine.h
U lib/Target/CellSPU/SPU.h
U lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp
U lib/Target/CellSPU/SPUTargetMachine.cpp
U lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp
U lib/Target/Mips/MipsTargetMachine.cpp
U lib/Target/Mips/MipsTargetMachine.h
U lib/Target/Mips/Mips.h
U lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp
U lib/Target/Sparc/SparcTargetMachine.cpp
U lib/Target/Sparc/SparcTargetMachine.h
U lib/ExecutionEngine/JIT/TargetSelect.cpp
U lib/Support/TargetRegistry.cpp
llvm-svn: 75820