MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
Differential Revision: https://reviews.llvm.org/D92553
locateSymbolAt (used in goToDeclaration) follows the
deduced type instead of failing to locate the declaration.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D92977
Indirect sibling calls need to use %r1 to hold the target address.
This is currently hard-coded in many places. This is not only
unnecessary, but makes future changes in this area difficult.
This patch now encodes the target address as operand without
hard coding a register in most places throughout the MI back-end.
Code generation still always uses %r1, but this is now decided
solely in one place in SystemZTargetLowering::LowerCall.
NFC intended.
Two RUN lines produce outputs that, each, have some common parts and
some different parts. The common parts are checked under label A. The
differing parts are associated to a function and checked under labels B
and C, respectivelly.
When build_function_body_dictionary is called for the first RUN line, it
will attribute the function body to labels A and C. When the second RUN
is passed to build_function_body_dictionary, it sees that the function
body under A is different from what it has. If in this second RUN line,
A were at the end of the prefixes list, A's body is still kept
associated with the first run's function.
When we output the function body (i.e. add_checks), we stop after
emitting for the first prefix matching that function. So we end up with
the wrong function body (first RUN's A-association).
There is no reason to special-case the last label in the prefixes list,
and the fix is to always clear a label association if we find a RUN line
where the body is different.
Differential Revision: https://reviews.llvm.org/D93078
7ad49aec12 added a __memory subdirectory to libc++
but the code we use to find libc++ from the debug info support files wasn't
prepared to encounter unknown subdirectories within libc++. The import-std-module
tests automatically fell back to not importing the std module which caused
them to fail.
This patch removes our hardcoded exception for the 'experimental' subdirectory
and instead just ignores all subdirectories of c++/vX/ when searching the
support files.
The AnnotationRemarks pass is already run at the end of the module
pipeline. This patch also adds it before bailing out for -O0, so remarks
are also generated with -O0.
This patch turns updates VPWidenSelectRecipe to manage the value
it defines using VPDef.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90560
This patch enables serial initialization in the forked child process
to fix unstable runtime behavior when used with Python-based AI tools.
Differential Revision: https://reviews.llvm.org/D93230
Boost in its infinite wisdom considers C: a parent of C:\, and we've
inherited that. This breaks the assumption that after canonicalizing a
path, the path parents are the directory's parents.
Summary: The clang-format may go wrong when handle c++ coroutine keywords and pointer.
The default value for PointerAlignment is PAS_Right. So the following format is good:
```
co_return *a;
```
But within some code style, the value for PointerAlignment is PAS_Left, the behavior goes wrong:
```
co_return* a;
```
test-plan: check-clang
reviewers: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D91245
Define vwadd/vwaddu/vwsub/vwsubu intrinsics and lower to V instructions.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D93108
AddPromotedToType is being used to legalise INT_TO_FP operations
when the source is a predicate. The point where this introduces
vector extends might cause problems in the future so this patch
falls back to manual promotion within custom lowering.
Differential Revision: https://reviews.llvm.org/D90093
optimizeGatherScatterInst does nothing specific to fixed length vectors
but uses FixedVectorType to extract the number of elements. This patch
simply updates the code to use VectorType and getElementCount instead.
For testing I just copied Transforms/CodeGenPrepare/X86/gather-scatter-opt.ll
replacing `<4 x ` with `<vscale x 4`.
Differential Revision: https://reviews.llvm.org/D92572
As discussed on D92645, we don't do a good job of recognising when we don't require the full width of a ymm/zmm build vector because the upper elements are undef/zero.
This commit allows us to make use of implicit zeroing of upper elements with AVX instructions, which we emulate in DAG with a INSERT_SUBVECTOR into the bottom of a undef/zero vector of the original type.
This exposed a limitation in getTargetConstantBitsFromNode which didn't extract bits from INSERT_SUBVECTORs of different element widths which I've included as well to prevent a couple of regressions.
This patch turns updates VPWidenGEPRecipe to manage the value it defines
using VPDef. The VPValue is used during VPlan construction and
codegeneration instead of the plain IR reference where possible.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90561
This patch turns updates VPWidenREcipe to manage the value it defines
using VPDef.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D90559
This patch enables marshalling of the exception model options while enforcing their mutual exclusivity. The clang driver interface remains the same, this only affects the cc1 command line.
Depends on D93215.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D93216
This squashes multiple members in LangOptions into one. This is leveraged in a follow-up patch that implements marshalling of related command-line options.
Depends on D93214.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D93215
This abstracts away the members that are being replaced in a follow-up patch.
Depends on D83979.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D93214
How about add hover information for `this` expr?
It seems useful to show related information about the class for `this` expr sometimes.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D92041
Support atomic exchange and atomic compare and exchange instructions.
Change CAS and TS1AM instructions for ISel patterns. Add selectADDRzi
pattern for them. Add TS1AM pseudo instruction also for better ISel.
Add shouldExpandAtomicRMWInIR() function to expand all atomicrmw
instructions except atomicrmw xchg. Add custom lower for i8/i16
atomicrmw xchg. Modify replaceFI to support CAS/TS1AM instructions
which use "reg+disp" operands instead of "reg+imm+disp" operands.
And, add several regression tests to check the correctness.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D93161
This is a change suggested in post commit comments for
D93096 (https://reviews.llvm.org/D93096#2451796).
Imagine we want to add a custom OS specific ELF file type.
For that we can update the `ElfObjectFileType` array:
```
static const EnumEntry<unsigned> ElfObjectFileType[] = {
...
{"Core", "CORE (Core file)", ELF::ET_CORE},
{"MyType", "MyType (my description)", 0xfe01},
};
```
The current code then might print:
```
OS Specific: (MyType (my description))
```
Though instead we probably would like to see a nicer output, e.g:
```
Type: MyType (my description)
```
To achieve that we can reorder the code slightly.
It is impossible to add a test I think, because we have no custom values in
the `ElfObjectFileType` array in LLVM.
Differential revision: https://reviews.llvm.org/D93217
aa772fc85e (D92530) has landed fixing relocations on Darwin.
3000c19df6 (D93236) has landed working around an assembly parser bug on Darwin.
Previous quick-fix d9697c2e6b (D93198) included in this commit.
Invoking the preprocessor ourselves is fragile and would require us to replicate CMake's handling of definitions, compiler flags, etc for proper compatibility.
In my toolchain builds this notably resulted in a bunch of warnings from unused flags as my CMAKE_C_FLAGS includes CPU-specific optimization options.
Notably this part was already duplicating the logic for VISIBILITY_HIDDEN define.
Instead, symlink the files and set the proper set of defines on each.
This should also be faster as we avoid invoking the compiler multiple times.
Fixes https://llvm.org/PR48494
Differential Revision: https://reviews.llvm.org/D93278
Put .cfi_startproc on a new line to avoid hitting the assembly parser bug in MasmParser::parseDirectiveCFIStartProc().
Reviewed By: tambre
Differential Revision: https://reviews.llvm.org/D93236
This patch exposes the Target::CreateBreakpoint overload with the
boolean argument to move to the neareast code to the SBAPI.
This is useful when creating column breakpoints to restrict lldb's
resolution to the pointed source location, preventing it to go to the next
line.
rdar://72196842
Differential Revision: https://reviews.llvm.org/D93266
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>