My bot runs VS 2019, but it could not compile this code.
Message:
[55/2465] Building CXX object lib\Target\Hexagon\CMakeFiles\LLVMHexagonCodeGen.dir\HexagonVectorCombine.cpp.obj
FAILED: lib/Target/Hexagon/CMakeFiles/LLVMHexagonCodeGen.dir/HexagonVectorCombine.cpp.obj
...
C:\Program Files (x86)\Microsoft Visual Studio\2019\Professional\VC\Tools\MSVC\14.23.28105\include\map(71): error C2976: 'std::map': too few template arguments
C:\Program Files (x86)\Microsoft Visual Studio\2019\Professional\VC\Tools\MSVC\14.23.28105\include\map(71): note: see declaration of 'std::map'
The version in the path, 14.23, corresponds to _MSC_VER 1923, so raise
the version floor to 1924.
I have not tested with versions between 1924 and 1928 (latest), but the
latest works with the variadic version.
The getPayload/getMask/getPassThrough functions should return values
that could be composed into a masked load/store without any additional
type casts. The previous fix violated that.
Instead, convert scalar mask to a vector right before rescaling.
AlignVectors treats all loaded/stored values as vectors of bytes,
and masks as corresponding vectors of booleans, so make getMask
produce a 1-element vector for scalars from the start.
Followup to D92112 now that I've learnt about HVX type splitting.
This is some necessary cleanup work for min/max ops to eventually help us move the add/sub sat patterns into DAGCombine - D91876.
Differential Revision: https://reviews.llvm.org/D92169
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).
This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.
The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.
Differential Revision: https://reviews.llvm.org/D91649
This should handle the basic integer min/max handling - the HVX ops are still TODO.
This is some necessary cleanup work for min/max ops to eventually help us move the add/sub sat patterns into DAGCombine - D91876.
Differential Revision: https://reviews.llvm.org/D92112
X86 was already specially marking fma as commutable which allowed
tablegen to autogenerate commuted patterns. This moves it to the target
independent definition and fix up the targets to remove now
unneeded patterns.
Unfortunately, the tests change because the commuted version of
the patterns are generating operands in a different than the
explicit patterns.
Differential Revision: https://reviews.llvm.org/D91842
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).
Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D90039
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
This reverts the revert commit 408c4408fa.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
Some instructions may be removable through processes such as IfConversion,
however DefinesPredicate can not be made aware of when this should be considered.
This parameter allows DefinesPredicate to distinguish these removable instructions
on a per-call basis, allowing for more fine-grained control from processes like
ifConversion.
Renames DefinesPredicate to ClobbersPredicate, to better reflect it's purpose
Differential Revision: https://reviews.llvm.org/D88494
The selection of HVX shuffles can produce more nodes in the DAG,
which need special handling, or otherwise they would be left
unselected by the main selection code. Make the handling of such
nodes more general.
When we know that a particular type is always going to be fixed
width we have so far been writing code like this:
getSizeInBits().getFixedSize()
Since we are doing this in quite a few places now it seems to make
sense to add a new helper function that allows us to replace
these calls with a single getFixedSizeInBits() call.
Differential Revision: https://reviews.llvm.org/D88649
The patch adds a new TargetMachine member "registerPassBuilderCallbacks" for targets to add passes to the pass pipeline using the New Pass Manager (similar to adjustPassManager for the Legacy Pass Manager).
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D88138
Legal vector element types may not be legal as scalar types. When
CONCAT_VECTORS is converted to BUILD_VECTOR, the individual vector
elements become standalone operands to the build operation. If they
have illegal (scalar) types, they need to be made legal. In doing
so, the case of TRUNCATE was not handled, causing an assertion to
fail.
The patch modifies HexagonVectorLoopCarriedReuse pass to make it compatible with both Legacy Pass Manager through HexagonVectorLoopCarriedReuseLegacyPass and with New Pass Manager through HexagonVectorLoopCarriedReusePass.
Reviewed By: pzheng
Differential Revision: https://reviews.llvm.org/D86955
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592