Previously, patchable extern relocations are introduced to patch
external variables used for multi versioning in
compile once, run everywhere use case. The load instruction
will be converted into a move with an patchable immediate
which can be changed by bpf loader on the host.
The kernel verifier has evolved and is able to load
and propagate constant values, so compiler relocation
becomes unnecessary. This patch removed codes related to this.
Differential Revision: https://reviews.llvm.org/D68760
llvm-svn: 374367
Summary: It ensures that the bswap is generated even when a part of the subtree already matches a bswap transform.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68250
llvm-svn: 374340
This selects MVE VQADD from the vector llvm.sadd.sat or llvm.uadd.sat
intrinsics.
Differential Revision: https://reviews.llvm.org/D68566
llvm-svn: 374336
EXPENSIVE_CHECKS build was failing on new test.
This is fixed by marking $ra register as undef.
Test now has -verify-machineinstrs to check for operand flags.
llvm-svn: 374320
Currently, the heuristics the if-conversion pass uses for diamond if-conversion
are based on execution time, with no consideration for code size. This adds a
new set of heuristics to be used when optimising for code size.
This is mostly target-independent, because the if-conversion pass can
see the code size of the instructions which it is removing. For thumb,
there are a few passes (insertion of IT instructions, selection of
narrow branches, and selection of CBZ instructions) which are run after
if conversion and affect these heuristics, so I've added target hooks to
better predict the code-size effect of a proposed if-conversion.
Differential revision: https://reviews.llvm.org/D67350
llvm-svn: 374301
SGPR_128 only includes the real allocatable SGPRs, and SReg_128 adds
the additional non-allocatable TTMP registers. There's no point in
allocating SReg_128 vregs. This shrinks the size of the classes
regalloc needs to consider, which is usually good.
llvm-svn: 374284
In a future patch, this will help cleanup m0 handling.
The register coalescer handles copies from a register that
materializes an immediate, but doesn't handle move immediates
itself. The virtual register uses will often be allocated to the same
register, so there end up being no real copy.
llvm-svn: 374257
This was ignoring the register bank of the input pointer, and
isUniformMMO seems overly aggressive.
This will now conservatively assume a VGPR in cases where the incoming
bank hasn't been determined yet (i.e. is from a loop phi).
llvm-svn: 374255
If original instruction did not have source modifiers they were
not added to the new DPP instruction as well, even if needed.
Differential Revision: https://reviews.llvm.org/D68729
llvm-svn: 374241
Summary:
This is necessary and sufficient to get simple cases of multiple
return working with multivalue enabled. More complex cases will
require block and loop signatures to be generalized to potentially be
type indices as well.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68684
llvm-svn: 374235
Summary:
This clang builtin and corresponding LLVM intrinsic are necessary to
expose the exact semantics of the underlying WebAssembly instruction
to users. LLVM produces a poison value if the dynamic swizzle indices
are greater than the vector size, but the WebAssembly instruction sets
the corresponding output lane to zero. Users who depend on this
behavior can safely use this builtin.
Depends on D68527.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68531
llvm-svn: 374189
Summary:
Adds the new v8x16.swizzle SIMD instruction as specified at
https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md#swizzling-using-variable-indices.
In addition to adding swizzles as a candidate lowering in
LowerBUILD_VECTOR, also rewrites and simplifies the lowering to
minimize the number of replace_lanes necessary rather than trying to
minimize code size. This leads to more uses of v128.const instead of
splats, which is expected to increase performance.
The new code will be easier to tune once V8 implements all the vector
construction operations, and it will also be easier to add new
candidate instructions in the future if necessary.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68527
llvm-svn: 374188
stack
This patch makes sure that if we tag some memory, we untag that memory before
the function returns/throws via any exit, reachable from the tag operation. For
that we place the untag operation either at:
a) the lifetime end call for the alloca, if that call post-dominates the
lifetime start call (where the tag operation is placed), or it (the
lifetime end call) dominates all reachable exits, otherwise
b) at the reachable exits
Differential Revision: https://reviews.llvm.org/D68469
llvm-svn: 374182
There were 2 problems here. First, these patterns were duplicated to
handle the inverted shift operands instead of using the commuted
PatFrags.
Second, the point of the zext folding patterns don't apply to the
non-0ing high subtargets. They should be skipped instead of inserting
the extension. The zeroing high code would be emitted when necessary
anyway. This was also emitting unnecessary zexts in cases where the
high bits were undefined.
llvm-svn: 374092
Summary:
Without offsets on the MachineMemOperands (MMOs),
MachineInstr::mayAlias() will return true for all reads and writes to the
same resource descriptor. This leads to O(N^2) complexity in the MachineScheduler
when analyzing dependencies of buffer loads and stores. It also limits
the SILoadStoreOptimizer from merging more instructions.
This patch reduces the compile time of one pathological compute shader
from 12 seconds to 1 second.
Reviewers: arsenm, nhaehnle
Reviewed By: arsenm
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65097
llvm-svn: 374087
Summary:
When searching for local expression tree created by stackified
registers, for 'block' placement, we start the search from the previous
instruction of a BB's terminator. But in 'try''s case, we should start
from the previous instruction of a call that can throw, or a EH_LABEL
that precedes the call, because the return values of the call's previous
instructions can be stackified and consumed by the throwing call.
For example,
```
i32.call @foo
call @bar ; may throw
br $label0
```
In this case, if we start the search from the previous instruction of
the terminator (`br` here), we end up stopping at `call @bar` and place
a 'try' between `i32.call @foo` and `call @bar`, because `call @bar`
does not have a return value so it is not a local expression tree of
`br`.
But in this case, unlike when placing 'block's, we should start the
search from `call @bar`, because the return value of `i32.call @foo` is
stackified and used by `call @bar`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68619
llvm-svn: 374073
During the If-Converter optimization pay attention when copying or
deleting call instructions in order to keep call site information in
valid state.
Reviewers: aprantl, vsk, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D66955
llvm-svn: 374068
When -pg option is present than a call to _mcount is inserted into every
function. However since the proper ABI was not followed then the generated
gmon.out did not give proper results. By inserting needed instructions
before every _mcount we can fix this.
Differential Revision: https://reviews.llvm.org/D68390
llvm-svn: 374055
Tim Northover remarked that the added patterns for fmls fp16
produce wrong code in case the fsub instruction has a
multiplication as its first operand, i.e., all the patterns FMLSv*_OP1:
> define <8 x half> @test_FMLSv8f16_OP1(<8 x half> %a, <8 x half> %b, <8 x half> %c) {
> ; CHECK-LABEL: test_FMLSv8f16_OP1:
> ; CHECK: fmls {{v[0-9]+}}.8h, {{v[0-9]+}}.8h, {{v[0-9]+}}.8h
> entry:
>
> %mul = fmul fast <8 x half> %c, %b
> %sub = fsub fast <8 x half> %mul, %a
> ret <8 x half> %sub
> }
>
> This doesn't look right to me. The exact instruction produced is "fmls
> v0.8h, v2.8h, v1.8h", which I think calculates "v0 - v2*v1", but the
> IR is calculating "v2*v1-v0". The equivalent <4 x float> code also
> doesn't emit an fmls.
This patch generates an fmla and negates the value of the operand2 of the fsub.
Inspecting the pattern match, I found that there was another mistake in the
opcode to be selected: matching FMULv4*16 should generate FMLSv4*16
and not FMLSv2*32.
Tested on aarch64-linux with make check-all.
Differential Revision: https://reviews.llvm.org/D67990
llvm-svn: 374044
Summary:
When getValueInMiddleOfBlock happens to be called for a basic block
that has no incoming value at all, an IMPLICIT_DEF is inserted in that
block via GetValueAtEndOfBlockInternal. This IMPLICIT_DEF must be at
the top of its basic block or it will likely not reach the use that
the caller intends to insert.
Issue: https://github.com/GPUOpen-Drivers/llpc/issues/204
Reviewers: arsenm, rampitec
Subscribers: jvesely, wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68183
llvm-svn: 374040
Based on the discussion in
http://lists.llvm.org/pipermail/llvm-dev/2019-October/135574.html, the
conclusion was reached that the ARM backend should produce vcmp instead
of vcmpe instructions by default, i.e. not be producing an Invalid
Operation exception when either arguments in a floating point compare
are quiet NaNs.
In the future, after constrained floating point intrinsics for floating
point compare have been introduced, vcmpe instructions probably should
be produced for those intrinsics - depending on the exact semantics
they'll be defined to have.
This patch logically consists of the following parts:
- Revert http://llvm.org/viewvc/llvm-project?rev=294945&view=rev and
http://llvm.org/viewvc/llvm-project?rev=294968&view=rev, which
implemented fine-tuning for when to produce vcmpe (i.e. not do it for
equality comparisons). The complexity introduced by those patches
isn't needed anymore if we just always produce vcmp instead. Maybe
these patches need to be reintroduced again once support is needed to
map potential LLVM-IR constrained floating point compare intrinsics to
the ARM instruction set.
- Simply select vcmp, instead of vcmpe, see simple changes in
lib/Target/ARM/ARMInstrVFP.td
- Adapt lots of tests that tested for vcmpe (instead of vcmp). For all
of these test, the intent of what is tested for isn't related to
whether the vcmp should produce an Invalid Operation exception or not.
Fixes PR43374.
Differential Revision: https://reviews.llvm.org/D68463
llvm-svn: 374025
Gather instructions can use i32 or i64 elements for indices. If
the index is zero extended from a type smaller than i32 to i64, we
can shrink the extend to just extend to i32.
llvm-svn: 373982
When the target option GuaranteedTailCallOpt is specified, calls with
the fastcc calling convention will be transformed into tail calls if
they are in tail position. This diff adds a new calling convention,
tailcc, currently supported only on X86, which behaves the same way as
fastcc, except that the GuaranteedTailCallOpt flag does not need to
enabled in order to enable tail call optimization.
Patch by Dwight Guth <dwight.guth@runtimeverification.com>!
Reviewed By: lebedev.ri, paquette, rnk
Differential Revision: https://reviews.llvm.org/D67855
llvm-svn: 373976
Summary:
There was a bug when computing the number of unwind destination
mismatches in CFGStackify. When there are many mismatched calls that
share the same (original) destination BB, they have to be counted
separately.
This also fixes a typo and runs `fixUnwindMismatches` only when the wasm
exception handling is enabled. This is to prevent unnecessary
computations and does not change behavior.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68552
llvm-svn: 373975
Summary:
Previously, `WebAssembly::mayThrow()` assumed all inputs are global
addresses. But when intrinsics, such as `memcpy`, `memmove`, or `memset`
are lowered to external symbols in instruction selection and later
emitted as library calls. And these functions don't throw.
This patch adds handling to those memory intrinsics to `mayThrow`
function. But while most of libcalls don't throw, we can't guarantee all
of them don't throw, so currently we conservatively return true for all
other external symbols.
I think a better way to solve this problem is to embed 'nounwind' info
in `TargetLowering::CallLoweringInfo`, so that we can access the info
from the backend. This will also enable transferring 'nounwind'
properties of LLVM IR instructions. Currently we don't transfer that
info and we can only access properties of callee functions, if the
callees are within the module. Other targets don't need this info in the
backend because they do all the processing before isel, but it will help
us because that info will reduce code size increase in fixing unwind
destination mismatches in CFGStackify.
But for now we return false for these memory intrinsics and true for all
other libcalls conservatively.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68553
llvm-svn: 373967
Start manually writing a table to get the subreg index. TableGen
should probably generate this, but I'm not sure what it looks like in
the arbitrary case where subregisters are allowed to not fully cover
the super-registers.
llvm-svn: 373947