Improve support for variadic regions in ODS-generated operation view classes.
In particular, make generated constructors take an extra argument that
specifies the number of variadic regions if the operation has them. Previously,
there was no mechanism to specify a non-zero number of variadic regions. Also
generate named accessors to regions.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D111783
Operations that have the InferTypeOpInterface trait can now omit the return
types in their custom assembly formats.
Differential Revision: https://reviews.llvm.org/D111326
Introduce support for accepting ops instead of values when constructing ops. A
single-result op can be used instead of a value, including in lists of values,
and any op can be used instead of a list of values. This is similar to, but
more powerful, than the C++ API that allows for implicitly casting an OpType to
Value if it is statically known to have a single result - the cast in Python is
based on the op dynamically having a single result, and also handles the
multi-result case. This allows to build IR in a more concise way:
op = dialect.produce_multiple_results()
other = dialect.produce_single_result()
dialect.consume_multiple_results(other, op)
instead of having to access the results manually
op = dialect.produce.multiple_results()
other = dialect.produce_single_result()
dialect.consume_multiple_results(other.result, op.operation.results)
The dispatch is implemented directly in Python and is triggered automatically
for autogenerated OpView subclasses. Extension OpView classes should use the
functions provided in ods_common.py if they want to implement this behavior.
An alternative could be to implement the dispatch in the C++ bindings code, but
it would require to forward opaque types through all Python functions down to a
binding call, which makes it hard to inspect them in Python, e.g., to obtain
the types of values.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D111306
This allows us to generate interfaces in a namespace,
following other TableGen'erated code.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D108311
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
clang-cl errors out while handling the templated version of tgfmt. This
patch works around the issue by explicitly choosing the non-templated
version of tgfmt, which takes an ArrayRef<std::string>.
More details in this thread:
https://lists.llvm.org/pipermail/cfe-dev/2021-September/068936.html
Thanks @Mehdi Amini for suggesting the fix :)
Differential Revision: https://reviews.llvm.org/D110223
When both a DefaultValuedAttr and a successor or variadic region was specified, this would generate invalid C++ declaration. There would be the parameter with a default value, followed by the successors/regions, which don't have a default, which is invalid.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110205
Currently DenseElementsAttr only exposes the ability to get the full range of values for a given type T, but there are many situations where we just want the beginning/end iterator. This revision adds proper value_begin/value_end methods for all of the supported T types, and also cleans up a bit of the interface.
Differential Revision: https://reviews.llvm.org/D104173
Some patterns may share the common DAG structures. Generate a static
function to do the match logic to reduce the binary size.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105797
Adds a new rewrite directive returnType that can be added at the end of an op's
argument list to explicitly specify return types.
```
(OpX $v0, $v1, (returnType "$_builder.getI32Type()"))
```
Pass in a bound value to copy its return type, or pass a native code call to
dynamically create new types.
```
(OpX $v0, $v1, (returnType $v0, (NativeCodeCall<"..."> $v1)))
```
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D109472
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.
Differential Revision: https://reviews.llvm.org/D108804
* It is pretty clear that no one has tried this yet since it was both incomplete and broken.
* Fixes a symbol hiding issues keeping even the generic builder from constructing an operation with successors.
* Adds ODS support for successors.
* Adds CAPI `mlirBlockGetParentRegion`, `mlirRegionEqual` + tests (and missing test for `mlirBlockGetParentOperation`).
* Adds Python property: `Block.region`.
* Adds Python methods: `Block.create_before` and `Block.create_after`.
* Adds Python property: `InsertionPoint.block`.
* Adds new blocks.py test to verify a plausible CFG construction case.
Differential Revision: https://reviews.llvm.org/D108898
This allows for using a different type when accessing a parameter than the
one used for storage. This allows for returning parameters by reference,
enables using more optimized/convient reference results, and more.
Differential Revision: https://reviews.llvm.org/D108593
This revision adds native ODS support for VariadicOfVariadic operand
groups. An example of this is the SwitchOp, which has a variadic number
of nested operand ranges for each of the case statements, where the
number of case statements is variadic. Builtin ODS support allows for
generating proper accessors for the nested operand ranges, builder
support, and declarative format support. VariadicOfVariadic operands
are supported by providing a segment attribute to use to store the
operand groups, mapping similarly to the AttrSizedOperand trait
(but with a user defined attribute name).
`build` methods for VariadicOfVariadic operand expect inputs of the
form `ArrayRef<ValueRange>`. Accessors for the variadic ranges
return a new `OperandRangeRange` type, which represents a
contiguous range of `OperandRange`. In the declarative assembly
format, VariadicOfVariadic operands and types are by default
formatted as a comma delimited list of value lists:
`(<value>, <value>), (), (<value>)`.
Differential Revision: https://reviews.llvm.org/D107774
Move StaticVerifierFunctionEmitter to CodeGenHelper.h so that it can be
used for both ODS and DRR.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D106636
When using an attribute where a value is expected previously this would fail
complaining about unbound symbol. Instead make error clear and mention common
failure reason.
Tested with gcc-10. Other compilers may generate additional warnings. This does not fix all warnings. There are a few extra ones in LLVMCore and MLIR.
* `OpEmitter::getAttrNameIndex`: -Wunused-function (function is private and not used anywhere)
* `PrintOpPass` copy constructor: -Wextra ("Base class should be explicitly initialized in the copy constructor")
* `LegalizeForLLVMExport.cpp`: -Woverflow (overflow is expected, silence warning by making the cast explicit)
Differential Revision: https://reviews.llvm.org/D107525
By making an explicit template specialization for the TypeID provided by these classes,
the compiler will not emit an inline weak definition and rely on the linker to unique it.
Instead a single definition will be emitted in the C++ file alongside the implementation
for these classes. That will turn into a linker error what is now a hard-to-debug runtime
behavior where instances of the same class may be using a different TypeID inside of
different DSOs.
Recommit 660a56956c after fixing gcc5
build.
Differential Revision: https://reviews.llvm.org/D105903
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
By making an explicit template specialization for the TypeID provided by these classes,
the compiler will not emit an inline weak definition and rely on the linker to unique it.
Instead a single definition will be emitted in the C++ file alongside the implementation
for these classes. That will turn into a linker error what is now a hard-to-debug runtime
behavior where instances of the same class may be using a different TypeID inside of
different DSOs.
Differential Revision: https://reviews.llvm.org/D105903
By making an explicit template specialization for the TypeID provided by these classes,
the compiler will not emit an inline weak definition and rely on the linker to unique it.
Instead a single definition will be emitted in the C++ file alongside the implementation
for these classes. That will turn into a linker error what is now a hard-to-debug runtime
behavior where instances of the same class may be using a different TypeID inside of
different DSOs.
Differential Revision: https://reviews.llvm.org/D105903
We are able to bind NativeCodeCall result as binding operation. To make
table-gen have better understanding in the form of helper function,
we need to specify the number of return values in the NativeCodeCall
template. A VoidNativeCodeCall is added for void case.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D102160
For example, we will generate incorrect code for the pattern,
def : Pat<((FooOp (FooOp, $a, $b), $b)), (...)>;
We didn't allow $b to be bond twice with same operand of same op.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105677
In cases where an operation has an argument or result named 'property', the
ODS-generated python fails on import because the `@property` resolves to the
`property` operation argument instead of the builtin `@property` decorator. We
should always use the fully qualified decorator name.
Reviewed By: mikeurbach
Differential Revision: https://reviews.llvm.org/D106106
Different constraints may share the same predicate, in this case, we
will generate duplicate ODS verification function.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D104369
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070
Operations currently rely on the string name of attributes during attribute lookup/removal/replacement, in build methods, and more. This unfortunately means that some of the most used APIs in MLIR require string comparisons, additional hashing(+mutex locking) to construct Identifiers, and more. This revision remedies this by caching identifiers for all of the attributes of the operation in its corresponding AbstractOperation. Just updating the autogenerated usages brings up to a 15% reduction in compile time, greatly reducing the cost of interacting with the attributes of an operation. This number can grow even higher as we use these methods in handwritten C++ code.
Methods for accessing these cached identifiers are exposed via `<attr-name>AttrName` methods on the derived operation class. Moving forward, users should generally use these methods over raw strings when an attribute name is necessary.
Differential Revision: https://reviews.llvm.org/D104167
Redirect the copy ctor to the actual class instead of
overwriting it with `TypeID` based ctor.
This allows the final Pass classes to have extra fields and logic for their copy.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D104302
ODS currently emits the interface trait class as a nested class inside the
interface class. As an unintended consequence, the default implementations of
interface methods have implicit access to static fields of the interface class,
e.g. those declared in `extraClassDeclaration`, including private methods (!),
or in the parent class. This may break the use of default implementations for
external models, which are not defined in the interface class, and generally
complexifies the abstraction.
Emit intraface traits outside of the interface class itself to avoid accidental
implicit visibility. Public static fields can still be accessed via explicit
qualification with a class name, e.g., `MyOpInterface::staticMethod()` instead
of `staticMethod`.
Update the documentation to clarify the role of `extraClassDeclaration` in
interfaces.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104384
This patch changes the (not recommended) static registration API from:
static PassRegistration<MyPass> reg("my-pass", "My Pass Description.");
to:
static PassRegistration<MyPass> reg;
And the explicit registration from:
void registerPass("my-pass", "My Pass Description.",
[] { return createMyPass(); });
To:
void registerPass([] { return createMyPass(); });
It is expected that Pass implementations overrides the getArgument() method
instead. This will ensure that pipeline description can be printed and parsed
back.
Differential Revision: https://reviews.llvm.org/D104421
Default implementations of interfaces may rely on extra class
declarations, which aren't currently generated in the external model,
that in turn may rely on functions defined in the main Attribute/Type
class, which wouldn't be available on the external model.
It may be desirable to provide an interface implementation for an attribute or
a type without modifying the definition of said attribute or type. Notably,
this allows to implement interfaces for attributes and types outside of the
dialect that defines them and, in particular, provide interfaces for built-in
types. Provide the mechanism to do so.
Currently, separable registration requires the attribute or type to have been
registered with the context, i.e. for the dialect containing the attribute or
type to be loaded. This can be relaxed in the future using a mechanism similar
to delayed dialect interface registration.
See https://llvm.discourse.group/t/rfc-separable-attribute-type-interfaces/3637
Depends On D104233
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104234
This is useful for "build tuple" type ops. In my case, in npcomp, I have
an op:
```
// Result type is `!torch.tuple<!torch.tensor, !torch.tensor>`.
torch.prim.TupleConstruct %0, %1 : !torch.tensor, !torch.tensor
```
and the context is required for the `Torch::TupleType::get` call (for
the case of an empty tuple).
The handling of these FmtContext's in the code is pretty ad-hoc -- I didn't
attempt to rationalize it and just made a targeted fix. As someone
unfamiliar with the code I had a hard time seeing how to more broadly fix
the situation.
Differential Revision: https://reviews.llvm.org/D104274
* Add `hasCanonicalizer` option to Dialect.
* Initialize canonicalizer with dialect-wide canonicalization patterns.
* Add test case to TestDialect.
Dialect-wide canonicalization patterns are useful if a canonicalization pattern does not conceptually associate with any single operation, i.e., it should not be registered as part of an operation's `getCanonicalizationPatterns` function. E.g., this is the case for canonicalization patterns that match an op interface.
Differential Revision: https://reviews.llvm.org/D103226
We are able to bind the result from native function while rewriting
pattern. In matching pattern, if we want to get some values back, we can
do that by passing parameter as return value placeholder. Besides, add
the semantic of '$_self' in NativeCodeCall while matching, it'll be the
operation that defines certain operand.
Differential Revision: https://reviews.llvm.org/D100746
This matches the current support provided to operations, and allows attaching traits, interfaces, and using the DeclareInterfaceMethods utility. This was missed when attribute/type generation was first added.
Differential Revision: https://reviews.llvm.org/D100233
This is useful for expressing specific table-gen options, like selecting
a particular dialect to print.
Use it to fix the documentation for the `pdl_interp` dialect which is now
generating the first dialect it finds in its input which is `pdl`.
Differential Revision: https://reviews.llvm.org/D100517
Enables performing the same filtering in the op doc definition as in the op definition generator.
Differential Revision: https://reviews.llvm.org/D99793
The issue was introduced in D98468.
The `{0}Regions` is an array of `std::unique_ptr<Region>` objects,
so it should be processed accordingly.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D99332
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
This mechanism makes it possible for a dialect to not register all
operations but still answer interface-based queries.
This can useful for dialects that are "open" or connected to an external
system and still interoperate with the compiler. It can also open up the
possibility to have a more extensible compiler at runtime: the compiler
does not need a pre-registration for each operation and the dialect can
inject behavior dynamically.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D93085
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
This provides a simplified way to implement 'matchAndRewrite' style
canonicalization patterns for ops that don't need the full power of
RewritePatterns. Using this style, you can implement a static method
with a signature like:
```
LogicalResult AssertOp::canonicalize(AssertOp op, PatternRewriter &rewriter) {
return success();
}
```
instead of dealing with defining RewritePattern subclasses. This also
adopts this for a few canonicalization patterns in the std dialect to
show how it works.
Differential Revision: https://reviews.llvm.org/D99143
The "else" group of an optional element is a collection of elements that get parsed/printed when the anchor of the main element group is *not* present. This is useful when there is a special syntax when an element is not present. The new syntax for an optional element is shown below:
```
optional-group: `(` elements `)` (`:` `(` else-elements `)`)? `?`
```
An example of how this might be used is shown below:
```tablegen
def FooOp : ... {
let arguments = (ins UnitAttr:$foo);
let assemblyFormat = "attr-dict (`foo_is_present` $foo^):(`foo_is_absent`)?";
}
```
would be formatted as such:
```mlir
// When the `foo` attribute is present:
foo.op foo_is_present
// When the `foo` attribute is not present:
foo.op foo_is_absent
```
Differential Revision: https://reviews.llvm.org/D99129
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
Now that all of the builtin dialect is generated from ODS, its documentation in LangRef can be split out and replaced with references to Dialects/Builtin.md. LangRef is quite crusty right now and should really have a full cleanup done in a followup.
Differential Revision: https://reviews.llvm.org/D98562
This removes the need to construct an APInt for each value, given that it is guaranteed to contain 32 bit elements.
BEGIN_PUBLIC
...text exposed to open source public git repo...
END_PUBLIC
Do not limit the number of arguments in rewriter pattern.
Introduce separate `FmtStrVecObject` class to handle
format of variadic `std::string` array.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97839
Add a feature to `EnumAttr` definition to generate
specialized Attribute class for the particular enumeration.
This class will inherit `StringAttr` or `IntegerAttr` and
will override `classof` and `getValue` methods.
With this class the enumeration predicate can be checked with simple
RTTI calls (`isa`, `dyn_cast`) and it will return the typed enumeration
directly instead of raw string/integer.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-add-enum-attribute-decorator-class/2252
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97836
Some parameters to attributes and types rely on special comparison routines other than operator== to ensure equality. This revision adds support for those parameters by allowing them to specify a `comparator` code block that determines if `$_lhs` and `$_rhs` are equal. An example of one of these paramters is APFloat, which requires `bitwiseIsEqual` for bitwise comparison (which we want for attribute equality).
Differential Revision: https://reviews.llvm.org/D98473
Start the description from a new line instead of putting the first
paragraph in the section header. Wrap the class name in backticks to
make it clear that it relates to the code.
This allows the caller to distinguish between a parse error or an
unmatched keyword. It fixes the redundant error that was emitted by the
caller when the generated parser would fail.
Differential Revision: https://reviews.llvm.org/D98162
* Only leaf packages are non-namespace packages. This allows most of the top levels to be split into different directories or deployment packages. In the previous state, the presence of __init__.py files at each level meant that the entire tree could only ever exist in one physical directory on the path.
* This changes the API usage slightly: `import mlir` will no longer do a deep import of `mlir.ir`, etc. This may necessitate some client code changes.
* Dialect gen code was restructured so that the user is responsible for providing the `my_dialect.py` file, which then must import its peer `_my_dialect_ops_gen`. This gives complete control of the dialect namespace to the user instead of to tablegen code, allowing further dialect-specific python APIs.
* Correspondingly, the previous extension modules `_my_dialect.py` are now `_my_dialect_ops_ext.py`.
* Now that the `linalg` namespace is open, moved the `linalg_opdsl` tool into it.
* This may require some corresponding downstream adjustments to npcomp, circt, et al:
* Probably some shallow imports need to be converted to deep imports (i.e. not `import mlir` brings in the world).
* Each tablegen generated dialect now needs an explicit `foo.py` which does a `from ._foo_ops_gen import *`. This is similar to the way that generated code operates in the C++ world.
* If providing dialect op extensions, those need to be moved from `_foo.py` -> `_foo_ops_ext.py`.
Differential Revision: https://reviews.llvm.org/D98096
The value type of the attribute can be specified by either overriding the typeBuilder field on the AttrDef, or by providing a parameter of type `AttributeSelfTypeParameter`. This removes the need to define custom storage class constructors for attributes that have a value type other than NoneType.
Differential Revision: https://reviews.llvm.org/D97590
The support for attributes closely maps that of Types (basically 1-1) given that Attributes are defined in exactly the same way as Types. All of the current ODS TypeDef classes get an Attr equivalent. The generation of the attribute classes themselves share the same generator as types.
Differential Revision: https://reviews.llvm.org/D97589
Use `StringLiteral` for function return type if it is known to return
constant string literals only.
This will make it visible to API users, that such values can be safely
stored, since they refers to constant data, which will never be deallocated.
`StringRef` is general is not safe to store for a long term,
since it might refer to temporal data allocated in heap.
Add `inline` and `constexpr` methods support to `OpMethod`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97390
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.
Differential Revision: https://reviews.llvm.org/D97431
Allows querying regions too via OpAdaptor's generated. This does not yet move region verification to adaptor nor require regions for ops where needed.
Differential Revision: https://reviews.llvm.org/D97519
This fixes the documentation emitted for type parameters. Also adds a
missing empty line, rendered as line break in mark down.
Co-authored-by: Simon Camphausen <simon.camphausen@iml.fraunhofer.de>
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97267
`verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods:
* `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser.
This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location.
* `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature.
This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary.
Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by:
* restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method.
* renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler.
Differential Revision: https://reviews.llvm.org/D97100
The functions translating enums to LLVM IR are generated in a single
file included in many places, not all of which use all translations.
Generate functions with "unused" attribute to silence compiler warnings.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96880
Port the translation of five dialects that define LLVM IR intrinsics
(LLVMAVX512, LLVMArmNeon, LLVMArmSVE, NVVM, ROCDL) to the new dialect
interface-based mechanism. This allows us to remove individual translations
that were created for each of these dialects and just use one common
MLIR-to-LLVM-IR translation that potentially supports all dialects instead,
based on what is registered and including any combination of translatable
dialects. This removal was one of the main goals of the refactoring.
To support the addition of GPU-related metadata, the translation interface is
extended with the `amendOperation` function that allows the interface
implementation to post-process any translated operation with dialect attributes
from the dialect for which the interface is implemented regardless of the
operation's dialect. This is currently applied to "kernel" functions, but can
be used to construct other metadata in dialect-specific ways without
necessarily affecting operations.
Depends On D96591, D96504
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D96592
Currently, vector.contract joins the intermediate result and the accumulator
argument (of ranks K) using summation. We desire more joining operations ---
such as max --- to help vector.contract express reductions. This change extends
Vector_ContractionOp to take an optional attribute (called "kind", of enum type
CombiningKind) specifying the joining operation to be add/mul/min/max for int/fp
, and and/or/xor for int only. By default this attribute has value "add".
To implement this we also need to extend vector.outerproduct, since
vector.contract gets transformed to vector.outerproduct (and that to
vector.fma). The extension for vector.outerproduct is also an optional kind
attribute that uses the same enum type and possible values. The default is
"add". In case of max/min we transform vector.outerproduct to a combination of
compare and select.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D93280
ModuleTranslation contains multiple fields that keep track of the mappings
between various MLIR and LLVM IR components. The original ModuleTranslation
extension model was based on inheritance, with these fields being protected and
thus accessible in the ModuleTranslation and derived classes. The
inheritance-based model doesn't scale to translation of more than one derived
dialect and will be progressively replaced with a more flexible one based on
dialect interfaces and a translation state that is separate from
ModuleTranslation. This change prepares the replacement by making the mappings
private and providing public methods to access them.
Depends On D96436
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96437
Previously it reported an op had side-effects iff it declared that it
didn't have any side-effects. This had the undesirable result that
canonicalization would always delete any intrinsic calls that did memory
stores and returned void.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96369
This allows for referencing nearly every component of an operation from within a custom directive.
It also fixes a bug with the current type_ref implementation, PR48478
Differential Revision: https://reviews.llvm.org/D96189
This reverts commit 511dd4f438 along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
This reverts commit 953086ddbb because
it breaks GCC 5 build:
error: could not convert '(const char*)""' from 'const char*' to 'llvm::StringLiteral'
static ::llvm::StringLiteral getDialectNamespace() { return ""; }
Use `StringLiteral` for function return type if it is known to return
constant string literals only.
This will make it visible to API users, that such values can be safely
stored, since they refers to constant data, which will never be deallocated.
`StringRef` is general is not safe to store for a long term,
since it might refer to temporal data allocated in heap.
Reviewed By: mehdi_amini, bkramer
Differential Revision: https://reviews.llvm.org/D95945
This makes the generated code independent from actual namespace of its users.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D95520
Add printer and parser hooks for a custom directive that allows
parsing and printing of idioms that can represent a list of values
each of which is either an integer or an SSA value. For example in
`subview %source[%offset_0, 1] [4, %size_1] [%stride_0, 3]`
each of the list (which represents offset, size and strides) is a mix
of either statically know integer values or dynamically computed SSA
values. Since this is used in many places adding a custom directive to
parse/print this idiom allows using assembly format on operations
which use this idiom.
Differential Revision: https://reviews.llvm.org/D95773
* As discussed, fixes the ordering or (operands, results) -> (results, operands) in various `create` like methods.
* Fixes a syntax error in an ODS accessor method.
* Removes the linalg example in favor of a test case that exercises the same.
* Fixes FuncOp visibility to properly use None instead of the empty string and defaults it to None.
* Implements what was documented for requiring that trailing __init__ args `loc` and `ip` are keyword only.
* Adds a check to `InsertionPoint.insert` so that if attempting to insert past the terminator, an exception is raised telling you what to do instead. Previously, this would crash downstream (i.e. when trying to print the resultant module).
* Renames `_ods_build_default` -> `build_generic` and documents it.
* Removes `result` from the list of prohibited words and for single-result ops, defaults to naming the result `result`, thereby matching expectations and what is already implemented on the base class.
* This was intended to be a relatively small set of changes to be inlined with the broader support for ODS generating the most specific builder, but it spidered out once actually testing various combinations, so rolling up separately.
Differential Revision: https://reviews.llvm.org/D95320
This revision adds support for using either operand or result types to anchor an optional group. It also removes the arbitrary restriction that type directives must refer to variables in the same group, which is overly limiting for a declarative format syntax.
Fixes PR#48784
Differential Revision: https://reviews.llvm.org/D95109