For decoding, keep the current behavior of always decoding these as their REP
versions. In the future, this could be improved to recognize the cases where
these behave as XACQUIRE and XRELEASE and decode them as such.
llvm-svn: 184207
The issue was that the MatchingInlineAsm and VariantID args to the
MatchInstructionImpl function weren't being set properly. Specifically, when
parsing intel syntax, the parser thought it was parsing inline assembly in the
at&t dialect; that will never be the case.
The crash was caused when the emitter tried to emit the instruction, but the
operands weren't set. When parsing inline assembly we only set the opcode, not
the operands, which is used to lookup the instruction descriptor.
rdar://13854391 and PR15945
Also, this commit reverts r176036. Now that we're correctly parsing the intel
syntax the pushad/popad don't match properly. I've reimplemented that fix using
a MnemonicAlias.
llvm-svn: 181620
unable to handle cases such as __asm mov eax, 8*-8.
This patch also attempts to simplify the state machine. Further, the error
reporting has been improved. Test cases included, but more will be added to
the clang side shortly.
rdar://13668445
llvm-svn: 179719
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
llvm-svn: 179266
memory operands.
Essentially, this layers an infix calculator on top of the parsing state
machine. The scale on the index register is still expected to be an immediate
__asm mov eax, [eax + ebx*4]
and will not work with more complex expressions. For example,
__asm mov eax, [eax + ebx*(2*2)]
The plus and minus binary operators assume the numeric value of a register is
zero so as to not change the displacement. Register operands should never
be an operand for a multiply or divide operation; the scale*indexreg
expression is always replaced with a zero on the operand stack to prevent
such a case.
rdar://13521380
llvm-svn: 178881
one-byte NOPs. If the processor actually executes those NOPs, as it sometimes
does with aligned bundling, this can have a performance impact. From my
micro-benchmarks run on my one machine, a 15-byte NOP followed by twelve
one-byte NOPs is about 20% worse than a 15 followed by a 12. This patch
changes NOP emission to emit as many 15-byte (the maximum) as possible followed
by at most one shorter NOP.
llvm-svn: 176464
This is complicated by backward labels (e.g., 0b can be both a backward label
and a binary zero). The current implementation assumes [0-9]b is always a
label and thus it's possible for 0b and 1b to not be interpreted correctly for
ms-style inline assembly. However, this is relatively simple to fix in the
inline assembly (i.e., drop the [bB]).
This patch also limits backward labels to [0-9]b, so that only 0b and 1b are
ambiguous.
Part of rdar://12470373
llvm-svn: 174983
Currently, when a fragment is relaxed, its size is modified, but its
offset is not (it gets laid out as a side effect of checking whether
it needs relaxation), then all subsequent fragments are invalidated
because their offsets need to change. When bundling is enabled,
relaxed fragments need to get laid out again, because the increase in
size may push it over a bundle boundary. So instead of only
invalidating subsequent fragments, also invalidate the fragment that
gets relaxed, which causes it to get laid out again.
This patch also fixes some trailing whitespace and fixes the
bundling-related debug output of MCFragments.
llvm-svn: 174401
make into the last commit.
Also, update the test-generation script to generate an exhaustive test for
align_to_end as well, and include the generated test.
llvm-svn: 171811
cvtsi2* should parse with an 'l' or 'q' suffix or no suffix at all. No suffix should be treated the same as 'l' suffix. Printing should always print a suffix. Previously we didn't parse or print an 'l' suffix.
cvtt*2si/cvt*2si should parse with an 'l' or 'q' suffix or not suffix at all. No suffix should use the destination register size to choose encoding. Printing should not print a suffix.
Original 'l' suffix issue with cvtsi2* pointed out by Michael Kuperstein.
llvm-svn: 171668
the script generating it. The test should never be modified manually. If anyone
needs to change it, please change the script and re-run it.
The script is placed into utils/testgen - I couldn't think of a better place,
and after some discussion on IRC this looked like a logical location.
llvm-svn: 170720
When an instruction as written requires 32-bit mode and we're assembling
in 64-bit mode, or vice-versa, issue a more specific diagnostic about
what's wrong.
rdar://12700702
llvm-svn: 167937
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
llvm-svn: 167573
The assembly string for the VMOVPQIto64rr instruction incorrectly lacked the 'v'
prefix, resulting in mis-assembly of the vanilla movd instruction.
llvm-svn: 162963
Corrected type for index of llvm.x86.avx2.gather.d.pd.256
from 256-bit to 128-bit.
Corrected types for src|dst|mask of llvm.x86.avx2.gather.q.ps.256
from 256-bit to 128-bit.
Support the following intrinsics:
llvm.x86.avx2.gather.d.q, llvm.x86.avx2.gather.q.q
llvm.x86.avx2.gather.d.q.256, llvm.x86.avx2.gather.q.q.256
llvm.x86.avx2.gather.d.d, llvm.x86.avx2.gather.q.d
llvm.x86.avx2.gather.d.d.256, llvm.x86.avx2.gather.q.d.256
llvm-svn: 159402
This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
llvm-svn: 157634
rdar://10873652
As part of this I updated the llvm-mc disassembler C API to always call the
SymbolLookUp call back even if there is no getOpInfo call back. If there is a
getOpInfo call back that is tried first and then if that gets no information
then the SymbolLookUp is called. I also made the code more robust by
memset(3)'ing to zero the LLVMOpInfo1 struct before then setting
SymbolicOp.Value before for the call to getOpInfo. And also don't use any
values from the LLVMOpInfo1 struct if getOpInfo returns 0. And also don't
use any of the ReferenceType or ReferenceName values from SymbolLookUp if it
returns NULL. rdar://10873563 and rdar://10873683
For the X86 target also fixed bugs so the annotations get printed.
Also fixed a few places in the ARM target that was not producing symbolic
operands for some instructions. rdar://10878166
llvm-svn: 151267
not depend on In32BitMode. Use the sysexitq mnemonic for the version with the
REX.W prefix and only allow it only In64BitMode. rdar://9738584
llvm-svn: 143112
the X86 asmparser to produce ranges in the one case that was annoying me, for example:
test.s:10:15: error: invalid operand for instruction
movl 0(%rax), 0(%edx)
^~~~~~~
It should be straight-forward to enhance filecheck, tblgen, and/or the .ll parser to use
ranges where appropriate if someone is interested.
llvm-svn: 142106
for cpp pre-processed assembly we give correct filename and line numbers when
reporting errors in assembly files when using clang and -integrated-as on .s
files. rdar://8998895
llvm-svn: 141814
This can happen in cases where TableGen generated asm matcher cannot check
whether a register operand is in the right register class. e.g. mem operands.
rdar://8204588
llvm-svn: 136292
llvm-mc gives an "invalid operand" error for instructions that take an unsigned
immediate which have the high bit set such as:
pblendw $0xc5, %xmm2, %xmm1
llvm-mc treats all x86 immediates as signed values and range checks them.
A small number of x86 instructions use the imm8 field as a set of bits.
This change only changes those instructions and where the high bit is not
ignored. The others remain unchanged.
llvm-svn: 136287
These are just FXSAVE and FXRSTOR with REX.W prefixes. These versions use
64-bit pointer values instead of 32-bit pointer values in the memory map they
dump and restore.
llvm-svn: 125446
instructions. I choose to handle this with an asmparser hack,
though it could be handled by changing all the instruction definitions
to allow be "setneb" instead of "setne". The asm parser hack is
better in this case, because we want the disassembler to produce
setne, not setneb.
llvm-svn: 120260
different forms of this instruction (movw/movl/movq) which we reported
as being ambiguous. Since they all do the same thing, gas just picks the
one with the shortest encoding. Follow its lead here.
This implements rdar://8208615
llvm-svn: 118362
exposed:
GAS doesn't accept "fcomip %st(1)", it requires "fcomip %st(1), %st(0)"
even though st(0) is implicit in all other fp stack instructions.
Fortunately, there is an alias for fcomip named "fcompi" and gas does
accept the default argument for the alias (boggle!).
As such, switch the canonical form of this instruction to "pi" instead
of "ip". This makes the code generator and disassembler generate pi,
avoiding the gas bug.
llvm-svn: 118356
shift-by-1 instructions, where the asmstring doesn't contain
the implicit 1. It turns out that a bunch of these rotate
instructions were completely broken because they used 1
instead of $1.
This fixes assembly mismatches on "rclb $1, %bl" and friends,
where we used to generate the 3 byte form, we now generate the
proper 2-byte form.
llvm-svn: 118355
floating point stack instructions instead of looking for b/w/l/q.
This fixes issues where we'd accidentally match fistp to fistpl,
when it is in fact an ambiguous instruction.
This changes the behavior of llvm-mc to reject fstp, which was the
correct fix for rdar://8456389:
t.s:1:1: error: ambiguous instructions require an explicit suffix (could be 'fstps', 'fstpl', or 'fstpt')
fstp (%rax)
it also causes us to correctly reject fistp and fist, which addresses
PR8528:
t.s:2:1: error: ambiguous instructions require an explicit suffix (could be 'fistps', or 'fistpl')
fistp (%rax)
^
t.s:3:1: error: ambiguous instructions require an explicit suffix (could be 'fists', or 'fistl')
fist (%rax)
^
Thanks to Ismail Donmez for tracking down the issue here!
llvm-svn: 118346
aliases installed and working. They now work when the
matched pattern and the result instruction have exactly
the same operand list.
This is now enough for us to define proper aliases for
movzx and movsx, implementing rdar://8017633 and PR7459.
Note that we do not accept instructions like:
movzx 0(%rsp), %rsi
GAS accepts this instruction, but it doesn't make any
sense because we don't know the size of the memory
operand. It could be 8/16/32 bits.
llvm-svn: 117901
in their asmstring. Fix the two x86 "NOREX" instructions that have them.
If these comments are important, the instlowering stuff can print them.
llvm-svn: 117897
sense, when the instruction takes the 16-bit ax register or m16 memory
location. These changes to llvm-mc matches what the darwin assembler
allows for these instructions. Done differently than in r117031 that
caused a valgrind error which was later reverted.
llvm-svn: 117433
sense, when the instruction takes the 16-bit ax register or m16 memory
location. These changes to llvm-mc matches what the darwin assembler allows
for these instructions. Also added the missing flex (without the wait prefix)
and ud2a as an alias to ud2 (still to add ud2b).
llvm-svn: 117031
word forms and suffixed versions to match the darwin assembler in 32-bit and
64-bit modes. This is again for use just with assembly source for llvm-mc .
llvm-svn: 116773
be more complete. These are only expected to be used by llvm-mc with assembly
source so there is no pattern, [], in the .td files. Most are being added to
X86InstrInfo.td as Chris suggested and only comments about register uses are
added. Suggestions welcome on the .td changes as I'm not sure on every detail
of the x86 records. More missing instructions will be coming.
llvm-svn: 116716
else in X86), and add support for pavgusb. This is apparently the
only instruction (other than movsx) that is preventing ffmpeg from building
with clang.
If someone else is interested in banging out the rest of the 3DNow!
instructions, it should be quite easy now.
llvm-svn: 115466