The compact instruction shuffles active elements of vector
into lowest numbered elements and sets remaining elements
to zero.
e.g.
compact z0.s, p0, z1.s
llvm-svn: 336789
The LASTB and LASTA instructions extract the last active element,
or element after the last active, from the source vector.
The added variants are:
Scalar:
last(a|b) w0, p0, z0.b
last(a|b) w0, p0, z0.h
last(a|b) w0, p0, z0.s
last(a|b) x0, p0, z0.d
SIMD & FP Scalar:
last(a|b) b0, p0, z0.b
last(a|b) h0, p0, z0.h
last(a|b) s0, p0, z0.s
last(a|b) d0, p0, z0.d
The CLASTB and CLASTA conditionally extract the last or element after
the last active element from the source vector.
The added variants are:
Scalar:
clast(a|b) w0, p0, w0, z0.b
clast(a|b) w0, p0, w0, z0.h
clast(a|b) w0, p0, w0, z0.s
clast(a|b) x0, p0, x0, z0.d
SIMD & FP Scalar:
clast(a|b) b0, p0, b0, z0.b
clast(a|b) h0, p0, h0, z0.h
clast(a|b) s0, p0, s0, z0.s
clast(a|b) d0, p0, d0, z0.d
Vector:
clast(a|b) z0.b, p0, z0.b, z1.b
clast(a|b) z0.h, p0, z0.h, z1.h
clast(a|b) z0.s, p0, z0.s, z1.s
clast(a|b) z0.d, p0, z0.d, z1.d
Please refer to the architecture specification for more details on
the semantics of the added instructions.
llvm-svn: 336783
This patch adds support for the following instructions:
CLS (Count Leading Sign bits)
CLZ (Count Leading Zeros)
CNT (Count non-zero bits)
CNOT (Logically invert boolean condition in vector)
NOT (Bitwise invert vector)
FABS (Floating-point absolute value)
FNEG (Floating-point negate)
All operations are predicated and unary, e.g.
clz z0.s, p0/m, z1.s
- CLS, CLZ, CNT, CNOT and NOT have variants for 8, 16, 32
and 64 bit elements.
- FABS and FNEG have variants for 16, 32 and 64 bit elements.
llvm-svn: 336677
This patch adds support for the following instructions:
CNTB CNTH - Determine the number of active elements implied by
CNTW CNTD the named predicate constant, multiplied by an
immediate, e.g.
cnth x0, vl8, #16
CNTP - Count active predicate elements, e.g.
cntp x0, p0, p1.b
counts the number of active elements in p1, predicated
by p0, and stores the result in x0.
llvm-svn: 336552
This patch completes support for shifts, which include:
- LSL - Logical Shift Left
- LSLR - Logical Shift Left, Reversed form
- LSR - Logical Shift Right
- LSRR - Logical Shift Right, Reversed form
- ASR - Arithmetic Shift Right
- ASRR - Arithmetic Shift Right, Reversed form
- ASRD - Arithmetic Shift Right for Divide
In the following variants:
- Predicated shift by immediate - ASR, LSL, LSR, ASRD
e.g.
asr z0.h, p0/m, z0.h, #1
(active lanes of z0 shifted by #1)
- Unpredicated shift by immediate - ASR, LSL*, LSR*
e.g.
asr z0.h, z1.h, #1
(all lanes of z1 shifted by #1, stored in z0)
- Predicated shift by vector - ASR, LSL*, LSR*
e.g.
asr z0.h, p0/m, z0.h, z1.h
(active lanes of z0 shifted by z1, stored in z0)
- Predicated shift by vector, reversed form - ASRR, LSLR, LSRR
e.g.
lslr z0.h, p0/m, z0.h, z1.h
(active lanes of z1 shifted by z0, stored in z0)
- Predicated shift left/right by wide vector - ASR, LSL, LSR
e.g.
lsl z0.h, p0/m, z0.h, z1.d
(active lanes of z0 shifted by wide elements of vector z1)
- Unpredicated shift left/right by wide vector - ASR, LSL, LSR
e.g.
lsl z0.h, z1.h, z2.d
(all lanes of z1 shifted by wide elements of z2, stored in z0)
*Variants added in previous patches.
llvm-svn: 336547
Support for SVE's TBL instruction for programmable table
lookup/permute using vector of element indices, e.g.
tbl z0.d, { z1.d }, z2.d
stores elements from z1, indexed by elements from z2, into z0.
llvm-svn: 336544
This patch adds support for:
UZP1 Concatenate even elements from two vectors
UZP2 Concatenate odd elements from two vectors
TRN1 Interleave even elements from two vectors
TRN2 Interleave odd elements from two vectors
With variants for both data and predicate vectors, e.g.
uzp1 z0.b, z1.b, z2.b
trn2 p0.s, p1.s, p2.s
llvm-svn: 336531
The checking is done deeper inside MachineBasicBlock, but this will
hopefully help to find issues when porting the machine outliner to a
target where Liveness tracking is broken (like ARM).
Differential Revision: https://reviews.llvm.org/D49023
llvm-svn: 336481
a deficiency in TableGen that has been addressed in r336334.
[AArch64][SVE] Asm: Support for predicated FP rounding instructions.
This patch also adds instructions for predicated FP square-root and
reciprocal exponent.
The added instructions are:
- FRINTI Round to integral value (current FPCR rounding mode)
- FRINTX Round to integral value (current FPCR rounding mode, signalling inexact)
- FRINTA Round to integral value (to nearest, with ties away from zero)
- FRINTN Round to integral value (to nearest, with ties to even)
- FRINTZ Round to integral value (toward zero)
- FRINTM Round to integral value (toward minus Infinity)
- FRINTP Round to integral value (toward plus Infinity)
- FSQRT Floating-point square root
- FRECPX Floating-point reciprocal exponent
llvm-svn: 336387
This patch also adds instructions for predicated FP square-root and
reciprocal exponent.
The added instructions are:
- FRINTI Round to integral value (current FPCR rounding mode)
- FRINTX Round to integral value (current FPCR rounding mode, signalling inexact)
- FRINTA Round to integral value (to nearest, with ties away from zero)
- FRINTN Round to integral value (to nearest, with ties to even)
- FRINTZ Round to integral value (toward zero)
- FRINTM Round to integral value (toward minus Infinity)
- FRINTP Round to integral value (toward plus Infinity)
- FSQRT Floating-point square root
- FRECPX Floating-point reciprocal exponent
llvm-svn: 336322
This patch adds both a vector and an immediate form, e.g.
- Vector form:
subr z0.h, p0/m, z0.h, z1.h
subtract active elements of z0 from z1, and store the result in z0.
- Immediate form:
subr z0.h, z0.h, #255
subtract elements of z0, and store the result in z0.
llvm-svn: 336274
SVE overloads the AArch64 PSTATE condition flags and introduces
a set of condition code aliases for the assembler. The
details are described in section 2.2 of the architecture
reference manual supplement for SVE.
In short:
SVE alias => AArch64 name
--------------------------
NONE => EQ
ANY => NE
NLAST => HS
LAST => LO
FIRST => MI
NFRST => PL
PMORE => HI
PLAST => LS
TCONT => GE
TSTOP => LT
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48869
llvm-svn: 336245
r336120 resulted in falling back to SelectionDAG more often due to the G_STORE
MMOs not matching the vreg size. This fixes that by explicitly any-extending the
value.
llvm-svn: 336209
Unpredicated FP-multiply of SVE vector with a vector-element given by
vector[index], for example:
fmul z0.s, z1.s, z2.s[0]
which performs an unpredicated FP-multiply of all 32-bit elements in
'z1' with the first element from 'z2'.
This patch adds restricted register classes for SVE vectors:
ZPR_3b (only z0..z7 are allowed) - for indexed vector of 16/32-bit elements.
ZPR_4b (only z0..z15 are allowed) - for indexed vector of 64-bit elements.
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48823
llvm-svn: 336205
This adds the following system registers:
- RAS registers,
- MPAM registers,
- Activitiy monitor registers,
- Trace Extension registers,
- Timing insensitivity of data processing instructions,
- Enhanced Support for Nested Virtualization.
Differential Revision: https://reviews.llvm.org/D48871
llvm-svn: 336193
We currently don't any-extend vararg parameters before storing them to the stack
locations on Darwin. However, SelectionDAG however does this, and so user code
is in the wild which inadvertently relies on this extension. This can manifest
in cases where the value stored is (int)0, but the actual parameter is interpreted
by va_arg as a pointer, and so not extending to 64 bits causes the callee to
load additional undefined bits.
llvm-svn: 336120
Increment/decrement vector by multiple of predicate constraint
element count.
The variants added by this patch are:
- INCH, INCW, INC
and (saturating):
- SQINCH, SQINCW, SQINCD
- UQINCH, UQINCW, UQINCW
- SQDECH, SQINCW, SQINCD
- UQDECH, UQINCW, UQINCW
For example:
incw z0.s, all, mul #4
llvm-svn: 336090
These patches were previously reverted as they led to
buildbot time-outs caused by large switch statement in
printAliasInstr when using UBSan and O3. The issue has
been addressed with a workaround (r335525).
llvm-svn: 336079
Initial patch adding assembly support for Armv8.4-A.
Besides adding v8.4 as a supported architecture to the usual places, this also
adds target features for the different crypto algorithms. Armv8.4-A introduced
new crypto algorithms, made them optional, and allows different combinations:
- none of the v8.4 crypto functions are supported, which is independent of the
implementation of the Armv8.0 SHA1 and SHA2 instructions.
- the v8.4 SHA512 and SHA3 support is implemented, in this case the Armv8.0
SHA1 and SHA2 instructions must also be implemented.
- the v8.4 SM3 and SM4 support is implemented, which is independent of the
implementation of the Armv8.0 SHA1 and SHA2 instructions.
- all of the v8.4 crypto functions are supported, in this case the Armv8.0 SHA1
and SHA2 instructions must also be implemented.
The v8.4 crypto instructions are added to AArch64 only, and not AArch32,
and are made optional extensions to Armv8.2-A.
The user-facing Clang options will map on these new target features, their
naming will be compatible with GCC and added in follow-up patches.
The Armv8.4-A instruction sets can be downloaded here:
https://developer.arm.com/products/architecture/a-profile/exploration-tools
Differential Revision: https://reviews.llvm.org/D48625
llvm-svn: 335953
Targets should be able to define whether or not they support the outliner
without the outliner being added to the pass pipeline. Before this, the
outliner pass would be added, and ask the target whether or not it supports the
outliner.
After this, it's possible to query the target in TargetPassConfig, before the
outliner pass is created. This ensures that passing -enable-machine-outliner
will not modify the pass pipeline of any target that does not support it.
https://reviews.llvm.org/D48683
llvm-svn: 335887
Add NoTrapAfterNoreturn target option which skips emission of traps
behind noreturn calls even if TrapUnreachable is enabled.
Enable the feature on Mach-O to save code size; Comments suggest it is
not possible to enable it for the other users of TrapUnreachable.
rdar://41530228
DifferentialRevision: https://reviews.llvm.org/D48674
llvm-svn: 335877
Now that we have the ability to legalize based on MMO's. Add support for
legalizing based on AtomicOrdering and use it to correct the legalization
of the atomic instructions.
Also extend all() to be a variadic template as this ruleset now requires
3 and 4 argument versions.
llvm-svn: 335767
It isn't safe to outline sequences of instructions where x16/x17/nzcv live
across the sequence.
This teaches the outliner to check whether or not a specific canidate has
x16/x17/nzcv live across it and discard the candidate in the case that that is
true.
https://bugs.llvm.org/show_bug.cgi?id=37573https://reviews.llvm.org/D47655
llvm-svn: 335758
This patch adds a custom trunc store lowering for v4i8 vector types.
Since there is not v.4b register, the v4i8 is promoted to v4i16 (v.4h)
and default action for v4i8 is to extract each element and issue 4
byte stores.
A better strategy would be to extended the promoted v4i16 to v8i16
(with undef elements) and extract and store the word lane which
represents the v4i8 subvectores. The construction:
define void @foo(<4 x i16> %x, i8* nocapture %p) {
%0 = trunc <4 x i16> %x to <4 x i8>
%1 = bitcast i8* %p to <4 x i8>*
store <4 x i8> %0, <4 x i8>* %1, align 4, !tbaa !2
ret void
}
Can be optimized from:
umov w8, v0.h[3]
umov w9, v0.h[2]
umov w10, v0.h[1]
umov w11, v0.h[0]
strb w8, [x0, #3]
strb w9, [x0, #2]
strb w10, [x0, #1]
strb w11, [x0]
ret
To:
xtn v0.8b, v0.8h
str s0, [x0]
ret
The patch also adjust the memory cost for autovectorization, so the C
code:
void foo (const int *src, int width, unsigned char *dst)
{
for (int i = 0; i < width; i++)
*dst++ = *src++;
}
can be vectorized to:
.LBB0_4: // %vector.body
// =>This Inner Loop Header: Depth=1
ldr q0, [x0], #16
subs x12, x12, #4 // =4
xtn v0.4h, v0.4s
xtn v0.8b, v0.8h
st1 { v0.s }[0], [x2], #4
b.ne .LBB0_4
Instead of byte operations.
llvm-svn: 335735
AArch64 was only setting costs for SK_Transpose, which meant that many of the simpler shuffles (e.g. SK_Select and SK_PermuteSingleSrc for larger vector elements) was being severely overestimated by the default shuffle expansion.
This patch adds costs to help improve SLP performance and avoid a regression in reductions introduced by D48174.
I'm not very knowledgeable about AArch64 shuffle lowering so I've kept the extra costs to a minimum - someone who knows this code can add extra costs which should improve vectorization a lot more.
Differential Revision: https://reviews.llvm.org/D48172
llvm-svn: 335329
This reverts commit d8f57105010cc7e78026e511d5def873fc91e0e7.
Original Commit:
Author: Haicheng Wu <haicheng@codeaurora.org>
Date: Sun Feb 18 13:51:33 2018 +0000
[AArch64] Coalesce Copy Zero during instruction selection
Add special case for copy of zero to avoid a double copy.
Differential Revision: https://reviews.llvm.org/D36104
Author's intention is to remove a BB that has one mov instruction. In
order to do that, d8f571050 pessmizes MachineSinking by introducing a
copy, such that mov instruction is NOT moved to the BB. Optimization
downstream gets rid of the BB with only mov instruction. This works well
if we have only one fall through branch as there is only one "extra"
mov instruction.
If we have multiple fall throughs, we will have a lot of redundant movs.
In such a case, it's better to have this BB which has one mov instruction.
This is causing degradation in jpeg, fft and other codebases. I believe
if we want to remove a BB with only one branch instruction, we should not
pessimize Machine Sinking at all, and find some other solution.
llvm-svn: 335251
insertOutlinerPrologue was not used by any target, and prologue-esque code was
beginning to appear in insertOutlinerEpilogue. Refactor that into one function,
buildOutlinedFrame.
This just removes insertOutlinerPrologue and renames insertOutlinerEpilogue.
llvm-svn: 335076
This patch uses the DiagnosticPredicate for SVE predicate patterns
to improve their diagnostics, now giving a 'invalid operand' diagnostic
if the type is not an immediate or one of the expected pattern
labels.
Reviewers: samparker, SjoerdMeijer, javed.absar, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48220
llvm-svn: 334983
The variants added by this patch are:
- SQINC signed increment, e.g. sqinc x0, w0, all, mul #4
- SQDEC signed decrement, e.g. sqdec x0, w0, all, mul #4
- UQINC unsigned increment, e.g. uqinc w0, all, mul #4
- UQDEC unsigned decrement, e.g. uqdec w0, all, mul #4
This patch includes asmparser changes to parse a GPR64 as a GPR32 in
order to satisfy the constraint check:
x0 == GPR64(w0)
in:
sqinc x0, w0, all, mul #4
^___^ (must match)
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47716
llvm-svn: 334980
This patch adds instructions for comparing elements from two vectors, e.g.
cmpgt p0.s, p0/z, z0.s, z1.s
and also adds support for comparing to a 64-bit wide element vector, e.g.
cmpgt p0.s, p0/z, z0.s, z1.d
The patch also contains aliases for certain comparisons, e.g.:
cmple p0.s, p0/z, z0.s, z1.s => cmpge p0.s, p0/z, z1.s, z0.s
cmplo p0.s, p0/z, z0.s, z1.s => cmphi p0.s, p0/z, z1.s, z0.s
cmpls p0.s, p0/z, z0.s, z1.s => cmphs p0.s, p0/z, z1.s, z0.s
cmplt p0.s, p0/z, z0.s, z1.s => cmpgt p0.s, p0/z, z1.s, z0.s
llvm-svn: 334931
Support for SVE's predicated select instructions to select elements
from either vector, both in a data-vector and a predicate-vector
variant.
llvm-svn: 334905
Increment/decrement scalar register by (scaled) element count given by
predicate pattern, e.g. 'incw x0, all, mul #4'.
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D47713
llvm-svn: 334838
Some instructions require of a limited set of FP immediates as operands,
for example '#0.5 or #1.0' for SVE's FADD instruction.
This patch adds support for parsing and printing such FP immediates as
exact values (e.g. #0.499999 is not accepted for #0.5).
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D47711
llvm-svn: 334826
Summary:
For targets I'm not familiar with, I've automatically made the "default to 1 for each resource" behaviour explicit in the td files.
For more obvious cases, I've ventured a fix.
Some notes:
- Exynos is especially fishy.
- AArch64SchedThunderX2T99.td had some truncated entries. If I understand correctly, the person who wrote that interpreted the ResourceCycle as a range. I made the decision to use the upper/lower bound for consistency with the 'Latency' value. I'm sure there is a better choice.
- The change to X86ScheduleBtVer2.td is an NFC, it just makes values more explicit.
Also see PR37310.
Reviewers: RKSimon, craig.topper, javed.absar
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D46356
llvm-svn: 334586
Register x20 is a callee-saved register which may be used for other
purposes in certain contexts, for example to hold special variables
within the kernel. This change adds support for reserving this register
both to frontend and backend to make this register usable for these
purposes.
Differential Revision: https://reviews.llvm.org/D46552
llvm-svn: 334531
On targets like Arm some relaxations may only be performed when certain
architectural features are available. As functions can be compiled with
differing levels of architectural support we must make a judgement on
whether we can relax based on the MCSubtargetInfo for the function. This
change passes through the MCSubtargetInfo for the function to
fixupNeedsRelaxation so that the decision on whether to relax can be made
per function. In this patch, only the ARM backend makes use of this
information. We must also pass the MCSubtargetInfo to applyFixup because
some fixups skip error checking on the assumption that relaxation has
occurred, to prevent code-generation errors applyFixup must see the same
MCSubtargetInfo as fixupNeedsRelaxation.
Differential Revision: https://reviews.llvm.org/D44928
llvm-svn: 334078
This is setting up to fix bug 37573 cleanly.
This moves data structures that are technically both used in some way by the
target and the general-purpose outlining algorithm into MachineOutliner.h. In
particular, the `Candidate` class is of importance.
Before, the outliner passed the locations of `Candidates` to the target, which
would then make some decisions about the prospective outlined function. This
change allows us to just pass `Candidates` along to the target. This will allow
the target to discard `Candidates` that would be considered unsafe before cost
calculation. Thus, we will be able to remove the unsafe candidates described in
the bug without resorting to torching the entire prospective function.
Also, as a side-effect, it makes the outliner a bit cleaner.
https://bugs.llvm.org/show_bug.cgi?id=37573
llvm-svn: 333952
Summary:
The new rules are straightforward. The main rules to keep in mind
are:
1. NAME is an implicit template argument of class and multiclass,
and will be substituted by the name of the instantiating def/defm.
2. The name of a def/defm in a multiclass must contain a reference
to NAME. If such a reference is not present, it is automatically
prepended.
And for some additional subtleties, consider these:
3. defm with no name generates a unique name but has no special
behavior otherwise.
4. def with no name generates an anonymous record, whose name is
unique but undefined. In particular, the name won't contain a
reference to NAME.
Keeping rules 1&2 in mind should allow a predictable behavior of
name resolution that is simple to follow.
The old "rules" were rather surprising: sometimes (but not always),
NAME would correspond to the name of the toplevel defm. They were
also plain bonkers when you pushed them to their limits, as the old
version of the TableGen test case shows.
Having NAME correspond to the name of the toplevel defm introduces
"spooky action at a distance" and breaks composability:
refactoring the upper layers of a hierarchy of nested multiclass
instantiations can cause unexpected breakage by changing the value
of NAME at a lower level of the hierarchy. The new rules don't
suffer from this problem.
Some existing .td files have to be adjusted because they ended up
depending on the details of the old implementation.
Change-Id: I694095231565b30f563e6fd0417b41ee01a12589
Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm, javed.absar
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D47430
llvm-svn: 333900
For immediates used in DUP instructions that have the range
-128 to 127, or a multiple of 256 in the range -32768 to 32512,
one could argue that when the result element size is 16bits (.h),
the value can be considered both signed and unsigned.
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47619
llvm-svn: 333873
Print the first indexed element as a FP register, for example:
mov z0.d, z1.d[0]
Is now printed as:
mov z0.d, d1
Next to printing, this patch also adds aliases to parse 'mov z0.d, d1'.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47571
llvm-svn: 333872
Unpredicated copy of indexed SVE element to SVE vector,
along with MOV-aliases.
For example:
dup z0.h, z1.h[0]
duplicates the first 16-bit element from z1 to all elements in
the result vector z0.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D47570
llvm-svn: 333871
Predicated copy of floating-point immediate value to SVE vector,
along with MOV-aliases.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: javed.absar
Differential Revision: https://reviews.llvm.org/D47518
llvm-svn: 333869
Predicated copy of possibly shifted immediate value into SVE
vector, along with MOV-aliases.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47517
llvm-svn: 333868
Before we were relying on the any extend of the s1 to s32, but
for AAPCS we need to zero-extend it to at least s8.
Fixes PR36719
Differential Revision: https://reviews.llvm.org/D47425
llvm-svn: 333747
Unpredicated copy of floating-point immediate value into SVE vector,
along with MOV-aliases.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47482
llvm-svn: 333744
Instead of asserting when using the def_cfa directive with a register
different from fp, fallback on DWARF.
Easily triggered with:
.cfi_def_cfa x1, 32;
rdar://40249694
Differential Revision: https://reviews.llvm.org/D47593
llvm-svn: 333667
This is to make it clear what kind of bugs the LegalizerInfo::verifier
is able to catch and test its output
Reviewers: aemerson, qcolombet
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D46338
llvm-svn: 333597
Floating point immediate combining a negative sign and
a hexadecimal number, e.g. #-0x0 caused the compiler to crash.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: javed.absar
Differential Revision: https://reviews.llvm.org/D47483
llvm-svn: 333524
As suggested in https://bugs.llvm.org/show_bug.cgi?id=32384#c1, this change
makes the inlining of `memset()` and `memcpy()` more aggressive when
compiling for speed. The tuning remains the same when optimizing for size.
Patch by: Sebastian Pop <s.pop@samsung.com>
Evandro Menezes <e.menezes@samsung.com>
Differential revision: https://reviews.llvm.org/D45098
llvm-svn: 333429
This patch addresses the following variants:
- bitmask immediate, e.g. 'and z0.d, z0.d, #0x6'.
- unpredicated data vectors, e.g. 'and z0.d, z1.d, z2.d'.
- predicated data vectors, e.g. 'and z0.d, p0/m, z0.d, z1.d'.
And also several aliases, such as:
- ORN, alias of ORR.
- EON, alias of EOR.
- BIC, alias of AND (immediate variant)
- MOV, alias of ORR (if unpredicated and source register operands are the same)
Reviewers: rengolin, huntergr, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47363
llvm-svn: 333414
This patch adds addsub_imm8_opt_lsl_(i8|i16|i32|i64) operands
that are unsigned values in the range 0 to 255. For element widths of
16 bits or higher it may also be a signed multiple of 256 in the
range 0 to 65280.
Note: This also does some refactoring to reuse convenience function
getShiftedVal<shift>(), and now allows AArch64 scalar 'ADD #-4096' to be
accepted to be mapped to SUB #4096.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47310
llvm-svn: 333408
Unpredicated copy of optionally-shifted immediate to SVE vector,
along with MOV-aliases.
This patch contains parsing and printing support for
cpy_imm8_opt_lsl_(i8|i16|i32|i64). This operand allows a signed value in
the range -128 to +127. For element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512.
For element-width of 8 bits a range of -128 to 255 is accepted, since a copy
of a byte can be considered either signed/unsigned.
Note: This patch renames tryParseAddSubImm() -> tryParseImmWithOptionalShift()
and moves the behaviour of trying to shift a plain immediate by an allowed
shift-value to its addImmWithOptionalShiftOperands() method, so that the
parsing itself is generic and allows immediates from multiple shifted operands.
This is done because an immediate can be divisible by both shifted operands.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47309
llvm-svn: 333263
The existing code has three different ways to try to lower a 64-bit
immediate to the sequence ORR+MOVK. The result is messy: it misses
some possible sequences, and the order of the checks means we sometimes
emit two MOVKs when we only need one.
Instead, just use a simple loop to try all possible two-instruction
ORR+MOVK sequences.
Differential Revision: https://reviews.llvm.org/D47176
llvm-svn: 333218
The AArch64 asm parser currently has custom parsing logic for .hword, .word,
and .xword. Rather than use this custom logic, we can just use
addAliasForDirective to enable the reuse of AsmParser::parseDirectiveValue.
Differential Revision: https://reviews.llvm.org/D47000
llvm-svn: 333077
When we're outlining a sequence that ends in a call, we can save up to
three instructions in the outlined function by turning the call into
a tail-call. I refer to this as thunk outlining because the resulting
outlined function looks like a thunk; suggestions welcome for a better
name.
In addition to making the outlined function shorter, thunk outlining
allows outlining calls which would otherwise be illegal to outline:
we don't need to save/restore LR, so we don't need to prove anything
about the stack access patterns of the callee.
To make this work effectively, I also added
MachineOutlinerInstrType::LegalTerminator to the generic MachineOutliner
code; this allows treating an arbitrary instruction as a terminator in
the suffix tree.
Differential Revision: https://reviews.llvm.org/D47173
llvm-svn: 333015