LLJITBuilder will now use JITLink on supported platforms even if a custom
JITTargetMachineBuilder is supplied, provided that neither the code model,
nor the relocation model, nor the ObjectLinkingLayerCreator is set.
JITLink (which underlies ObjectLinkingLayer) is a replacement for RuntimeDyld.
It supports the native code model, and linker plugins that enable a wider range
of features than RuntimeDyld.
Currently only enabled for MachO/x86-64 and MachO/arm64. New architectures will
be added as JITLink support for them is developed.
This relieves ObjectLinkingLayer clients of the responsibility of holding the
memory manager. This makes it easier to select between RTDyldObjectLinkingLayer
(which already owned its memory manager factory) and ObjectLinkingLayer at
runtime as clients aren't required to hold a jitlink::MemoryManager field just
in case ObjectLinkingLayer is selected.
This patch removes the magic "main" JITDylib from ExecutionEngine. The main
JITDylib was created automatically at ExecutionSession construction time, and
all subsequently created JITDylibs were added to the main JITDylib's
links-against list by default. This saves a couple of lines of boilerplate for
simple JIT setups, but this isn't worth introducing magical behavior for.
ORCv2 clients should now construct their own main JITDylib using
ExecutionSession::createJITDylib and set up its linkages manually using
JITDylib::setSearchOrder (or related methods in JITDylib).
The runAsMain function takes a pointer to a function with a standard C main
signature, int(*)(int, char*[]), and invokes it using the given arguments and
program name. The arguments are copied into writable temporary storage as
required by the C and C++ specifications, so runAsMain safe to use when calling
main functions that modify their arguments in-place.
This patch also uses the new runAsMain function to replace hand-rolled versions
in lli, llvm-jitlink, and the SpeculativeJIT example.
libraries.
This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:
-- Each symbol being looked for is now associated with a SymbolLookupFlags
value. If the associated value is SymbolLookupFlags::RequiredSymbol then
the symbol must be defined in one of the JITDylibs being searched (or be
able to be generated in one of these JITDylibs via an attached definition
generator) or the lookup will fail with an error. If the associated value is
SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
undefined, in which case it will simply not appear in the resulting
SymbolMap if the rest of the lookup succeeds.
Since lookup now requires these flags for each symbol, the lookup method now
takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
responsible for ensuring that the set property (i.e. unique elements) holds,
though this is usually simple and SymbolLookupSet provides convenience
methods to support this.
-- Lookups now have an associated LookupKind value, which is either
LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
the lookup kind when determining whether or not to generate new definitions.
The StaticLibraryDefinitionGenerator is updated to only pull in new objects
from the archive if the lookup kind is Static. This allows lookup to be
re-used to emulate dlsym for JIT'd symbols without pulling in new objects
from archives (which would not happen in a normal dlsym call).
-- JITLink is updated to allow externals to be assigned weak linkage, and
weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
for lookups. Unresolved weak references will be assigned the default value of
zero.
Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
In a34680a33e OrcError.h and Orc/RPC/*.h were split out from the rest of
ExecutionEngine in order to eliminate false dependencies for remote JIT
targets (see https://reviews.llvm.org/D68732), however this broke modules
builds (see https://reviews.llvm.org/D69817).
This patch splits these headers out into a separate module, LLVM_OrcSupport,
in order to fix the modules build.
Fixes <rdar://56377508>.
It was failing with
PerfJITEventListener.cpp:489:7: error: 'ManagedStatic' in namespace 'llvm' does not name a template type
llvm::ManagedStatic<PerfJITEventListener> PerfListener;
It was failing with
llvm/lib/ExecutionEngine/Orc/DebugUtils.cpp:56:10:
error: could not convert ‘Obj’ from ‘std::unique_ptr<llvm::MemoryBuffer>’
to ‘llvm::Expected<std::unique_ptr<llvm::MemoryBuffer> >’
return Obj;
^
Adds a DumpObjects utility that can be used to dump JIT'd objects to disk.
Instances of DebugObjects may be used by ObjectTransformLayer as no-op
transforms.
This patch also adds an ObjectTransformLayer to LLJIT and an example of how
to use this utility to dump JIT'd objects in LLJIT.
Some targets (E.g. MachO/arm64) use relocations to fix some CFI record fields
in the eh-frame section. When relocations are used the initial (pre-relocation)
content of the eh-frame section can no longer be interpreted by following the
eh-frame specification. This causes errors in the existing eh-frame parser.
This patch moves eh-frame handling into two LinkGraph passes that are run after
relocations have been parsed (but before they are applied). The first] pass
breaks up blocks in the eh-frame section into per-CFI-record blocks, and the
second parses blocks of (potentially multiple) CFI records and adds the
appropriate edges to any CFI fields that do not have existing relocations.
These passes can be run independently of one another. By handling eh-frame
splitting/fixing with LinkGraph passes we can both re-use existing relocations
for CFI record fields and avoid applying eh-frame fixups before parsing the
section (which would complicate the linker and require extra temporary
allocations of working memory).
LinkGraph::splitBlock will split a block at a given index, returning a new
block covering the range [ 0, index ) and modifying the original block to
cover the range [ index, original-block-size ). Block addresses, content,
edges and symbols will be updated as necessary. This utility will be used
in upcoming improvements to JITLink's eh-frame support.
Summary:
When createing an ORC remote JIT target the current library split forces the target process to link large portions of LLVM (Core, Execution Engine, JITLink, Object, MC, Passes, RuntimeDyld, Support, Target, and TransformUtils). This occurs because the ORC RPC interfaces rely on the static globals the ORC Error types require, which starts a cycle of pulling in more and more.
This patch breaks the ORC RPC Error implementations out into an "OrcError" library which only depends on LLVM Support. It also pulls the ORC RPC headers into their own subdirectory.
With this patch code can include the Orc/RPC/*.h headers and will only incur link dependencies on LLVMOrcError and LLVMSupport.
Reviewers: lhames
Reviewed By: lhames
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68732
Sections may have zero size and zero-sized sections may share a start address
with other zero-sized sections. For the section overlap test to function
correctly zero-sized sections must be ordered before any non-zero sized ones.
This should fix the intermittent failures in the
test/ExecutionEngine/JITLink/X86/MachO_zero_fill_alignment.s test case that
have been observed on some builders.
It returns just a section_iterator currently and have a report_fatal_error call inside.
This change adds a way to return errors and handle them on caller sides.
The patch also changes/improves current users and adds test cases.
Differential revision: https://reviews.llvm.org/D69167
llvm-svn: 375408
Works on this dependency chain:
ArrayRef.h ->
Hashing.h -> --CUT--
Host.h ->
StringMap.h / StringRef.h
ArrayRef is very popular, but Host.h is rarely needed. Move the
IsBigEndianHost constant to SwapByteOrder.h. Clients of that header are
more likely to need it.
llvm-svn: 375316
RTDyldObjectLinkingLayer allowed clients to register a NotifyEmitted function to
reclaim ownership of object buffers once they had been linked. This patch adds
similar functionality to ObjectLinkingLayer: Clients can now optionally call the
ObjectLinkingLayer::setReturnObjectBuffer method to register a function that
will be called when discarding object buffers. If set, this function will be
called to return ownership of the object regardless of whether the link
succeeded or failed.
Use cases for this function include debug dumping (it provides a way to dump
all objects linked into JIT'd code) and object re-use (e.g. storing an
object in a cache).
llvm-svn: 374951
InProcessMemoryManager used to make separate memory allocation calls for each
permission level (RW, RX, RO), which could lead to target-out-of-range errors
if data and code were placed too far apart (this was the source of failures in
the JITLink/AArch64 testcase when it was first landed).
This patch updates InProcessMemoryManager to allocate a single slab which is
subdivided between text and data. This should guarantee that accesses remain
in-range provided that individual object files do not exceed 1Mb in size.
This patch also re-enables the JITLink/AArch64 testcase.
llvm-svn: 374948
This implementation has support for all relocation types except TLV.
Compact unwind sections are not yet supported, so exceptions/unwinding will not
work.
llvm-svn: 374476
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935
In the Atom model the symbols, content and relocations of a relocatable object
file are represented as a graph of atoms, where each Atom represents a
contiguous block of content with a single name (or no name at all if the
content is anonymous), and where edges between Atoms represent relocations.
If more than one symbol is associated with a contiguous block of content then
the content is broken into multiple atoms and layout constraints (represented by
edges) are introduced to ensure that the content remains effectively contiguous.
These layout constraints must be kept in mind when examining the content
associated with a symbol (it may be spread over multiple atoms) or when applying
certain relocation types (e.g. MachO subtractors).
This patch replaces the Atom model in JITLink with a blocks-and-symbols model.
The blocks-and-symbols model represents relocatable object files as bipartite
graphs, with one set of nodes representing contiguous content (Blocks) and
another representing named or anonymous locations (Symbols) within a Block.
Relocations are represented as edges from Blocks to Symbols. This scheme
removes layout constraints (simplifying handling of MachO alt-entry symbols,
and hopefully ELF sections at some point in the future) and simplifies some
relocation logic.
llvm-svn: 373689
The static analyzer is warning about potential null dereferences of dyn_cast<> results - in these cases we can safely use cast<> directly as we know that these cases should all be the correct type, which is why its working atm and anyway cast<> will assert if they aren't.
llvm-svn: 371998