We have a similar match for patterns ending in a truncate. This
should be ok for all targets because the default expansion would
still likely be better from replacing 2 'and' ops with 1.
Attempt to show the logic equivalence in Alive (which doesn't
currently have funnel-shift in its vocabulary AFAICT):
%shamt = zext i8 %i to i32
%m = and i32 %shamt, 31
%neg = sub i32 0, %shamt
%and4 = and i32 %neg, 31
%shl = shl i32 %v, %m
%shr = lshr i32 %v, %and4
%or = or i32 %shr, %shl
=>
%a = and i8 %i, 31
%shamt2 = zext i8 %a to i32
%neg2 = sub i32 0, %shamt2
%and4 = and i32 %neg2, 31
%shl = shl i32 %v, %shamt2
%shr = lshr i32 %v, %and4
%or = or i32 %shr, %shl
https://rise4fun.com/Alive/V9r
llvm-svn: 360605
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This bug seems to be harmless in release builds, but will cause an error in UBSAN
builds or an assertion failure in debug builds.
When it gets to this opcode comparison, it assumes both of the operands are BinaryOperators,
but the prior m_LogicalShift will also match a ConstantExpr. The cast<BinaryOperator> will
assert in a debug build, or reading an invalid value for BinaryOp from memory with
((BinaryOperator*)constantExpr)->getOpcode() will cause an error in a UBSAN build.
The test I added will fail without this change in debug/UBSAN builds, but not in release.
Patch by: @AndrewScheidecker (Andrew Scheidecker)
Differential Revision: https://reviews.llvm.org/D58049
llvm-svn: 353736
This is matching the equivalent of the DAG expansion,
so it should never end up with worse perf than the
original code even if the target doesn't have a rotate
instruction.
llvm-svn: 350672
Similar to rL350199 - there are no known analysis/codegen holes for
funnel shift intrinsics now, so we can canonicalize the 6+ regular
instructions to funnel shift to improve vectorization, inlining,
unrolling, etc.
llvm-svn: 350419
The final piece of IR-level analysis to allow this was committed with:
rL350188
Using the intrinsics should improve transforms based on cost models
like vectorization and inlining.
The backend should be prepared too, so we can now canonicalize more
sequences of shift/logic to the intrinsics and know that the end
result should be equal or better to the original code even if the
target does not have an actual rotate instruction.
llvm-svn: 350199
There's a potential miscompile here. It's unlikely in the real
world because this transform is guarded with shouldChangeType(),
but this test file doesn't include a standard data-layout for
some reason (despite including a custom 1), so we can see the bug.
llvm-svn: 346966
The cmp+branch variant of this pattern is shown in:
https://bugs.llvm.org/show_bug.cgi?id=34924
...and as discussed there, we probably can't transform
that without a rotate intrinsic. We do have that now
via funnel shift, but we're not quite ready to
canonicalize IR to that form yet. The case with 'select'
should already be transformed though, so that's this patch.
The sequence with negation followed by masking is what we
use in the backend and partly in clang (though that part
should be updated).
https://rise4fun.com/Alive/TplC
%cmp = icmp eq i32 %shamt, 0
%sub = sub i32 32, %shamt
%shr = lshr i32 %x, %shamt
%shl = shl i32 %x, %sub
%or = or i32 %shr, %shl
%r = select i1 %cmp, i32 %x, i32 %or
=>
%neg = sub i32 0, %shamt
%masked = and i32 %shamt, 31
%maskedneg = and i32 %neg, 31
%shl2 = lshr i32 %x, %masked
%shr2 = shl i32 %x, %maskedneg
%r = or i32 %shl2, %shr2
llvm-svn: 346807
This is a longer variant for the pattern handled in
rL346713
This one includes zexts.
Eventually, we should canonicalize all rotate patterns
to the funnel shift intrinsics, but we need a bit more
infrastructure to make sure the vectorizers handle those
intrinsics as well as the shift+logic ops.
https://rise4fun.com/Alive/FMn
Name: narrow rotateright
%neg = sub i8 0, %shamt
%rshamt = and i8 %shamt, 7
%rshamtconv = zext i8 %rshamt to i32
%lshamt = and i8 %neg, 7
%lshamtconv = zext i8 %lshamt to i32
%conv = zext i8 %x to i32
%shr = lshr i32 %conv, %rshamtconv
%shl = shl i32 %conv, %lshamtconv
%or = or i32 %shl, %shr
%r = trunc i32 %or to i8
=>
%maskedShAmt2 = and i8 %shamt, 7
%negShAmt2 = sub i8 0, %shamt
%maskedNegShAmt2 = and i8 %negShAmt2, 7
%shl2 = lshr i8 %x, %maskedShAmt2
%shr2 = shl i8 %x, %maskedNegShAmt2
%r = or i8 %shl2, %shr2
llvm-svn: 346716
The sub-pattern for the shift amount in a rotate can take on
several different forms, and there's apparently no way to
canonicalize those without seeing the entire rotate sequence.
This is the form noted in:
https://bugs.llvm.org/show_bug.cgi?id=39624https://rise4fun.com/Alive/qnT
%zx = zext i8 %x to i32
%maskedShAmt = and i32 %shAmt, 7
%shl = shl i32 %zx, %maskedShAmt
%negShAmt = sub i32 0, %shAmt
%maskedNegShAmt = and i32 %negShAmt, 7
%shr = lshr i32 %zx, %maskedNegShAmt
%rot = or i32 %shl, %shr
%r = trunc i32 %rot to i8
=>
%truncShAmt = trunc i32 %shAmt to i8
%maskedShAmt2 = and i8 %truncShAmt, 7
%shl2 = shl i8 %x, %maskedShAmt2
%negShAmt2 = sub i8 0, %truncShAmt
%maskedNegShAmt2 = and i8 %negShAmt2, 7
%shr2 = lshr i8 %x, %maskedNegShAmt2
%r = or i8 %shl2, %shr2
llvm-svn: 346713
These rotates take the form
(x << (n & mask)) | (x >> (-n & mask)) where mask is bitwidth - 1.
If x has been promoted to a wider type than its original bit width due to type promotion we fail to narrower it and therefore don't recognize it as a rotate.
llvm-svn: 332068
I couldn't find any smaller folds to help the cases in:
https://bugs.llvm.org/show_bug.cgi?id=34046
after:
rL310141
The truncated rotate-by-variable patterns elude all of the existing transforms because
of multiple uses and knowledge about demanded bits and knownbits that doesn't exist
without the whole pattern. So we need an unfortunately large pattern match. But by
simplifying this pattern in IR, the backend is already able to generate
rolb/rolw/rorb/rorw for x86 using its existing rotate matching logic (although
there is a likely extraneous 'and' of the rotate amount).
Note that rotate-by-constant doesn't have this problem - smaller folds should already
produce the narrow IR ops.
Differential Revision: https://reviews.llvm.org/D36395
llvm-svn: 310509