Also add baseline tests to show effect of later patches.
There were a couple of regressions here that were never caught,
but my patch set that this is a preparation to will fix them.
This is the third attempt to land this patch.
Differential Revision: https://reviews.llvm.org/D61150
llvm-svn: 363319
This reverts 363226 and 363227, both NFC intended
I swear I fixed the test case that is failing, and ran
the tests, but I will look into it again.
llvm-svn: 363229
Also add baseline tests to show effect of later patches.
There were a couple of regressions here that were never caught,
but my patch set that this is a preparation to will fix them.
Differential Revision: https://reviews.llvm.org/D61150
llvm-svn: 363226
see if my changes change anything
Also add baseline tests to show effect of later patches.
Differential Revision: https://reviews.llvm.org/D61150
llvm-svn: 363222
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
reduce the number of comparisons.
Specifically, InstCombine can turn:
(i == 5334 || i == 5335)
into:
((i | 1) == 5335)
SimplifyCFG was already able to detect the pattern:
(i == 5334 || i == 5335)
to:
((i & -2) == 5334)
This patch supersedes D21315 and resolves PR27555
(https://llvm.org/bugs/show_bug.cgi?id=27555).
Thanks to David and Chandler for the suggestions!
Author: Thomas Jablin (tjablin)
Reviewers: majnemer chandlerc halfdan cycheng
http://reviews.llvm.org/D21397
llvm-svn: 273639
(i == 5334 || i == 5335)
to:
((i & -2) == 5334)
This transformation has some incorrect side conditions. Specifically, the
transformation is only applied when the right-hand side constant (5334 in
the example) is a power of two not equal and not equal to the negated mask.
These side conditions were added in r258904 to fix PR26323. The correct side
condition is that: ((Constant & Mask) == Constant)[(5334 & -2) == 5334].
It's a little bit hard to see why these transformations are correct and what
the side conditions ought to be. Here is a CVC3 program to verify them for
64-bit values:
ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
x : BITVECTOR(64);
y : BITVECTOR(64);
z : BITVECTOR(64);
mask : BITVECTOR(64) = BVSHL(ONE, z);
QUERY( (y & ~mask = y) =>
((x & ~mask = y) <=> (x = y OR x = (y | mask)))
);
Please note that each pattern must be a dual implication (<--> or iff). One
directional implication can create spurious matches. If the implication is
only one-way, an unsatisfiable condition on the left side can imply a
satisfiable condition on the right side. Dual implication ensures that
satisfiable conditions are transformed to other satisfiable conditions and
unsatisfiable conditions are transformed to other unsatisfiable conditions.
Here is a concrete example of a unsatisfiable condition on the left
implying a satisfiable condition on the right:
mask = (1 << z)
(x & ~mask) == y --> (x == y || x == (y | mask))
Substituting y = 3, z = 0 yields:
(x & -2) == 3 --> (x == 3 || x == 2)
The version of this code before r258904 had no side-conditions and
incorrectly justified itself in comments through one-directional
implication.
Thanks to Chandler for the suggestion!
Author: Thomas Jablin (tjablin)
Reviewers: chandlerc majnemer hfinkel cycheng
http://reviews.llvm.org/D21417
llvm-svn: 272873
SimplifyCFG tries to turn complex branch conditions into a switch.
Some of it's logic attempts to reason about bitwise arithmetic produced
by InstCombine. InstCombine can turn things like (X == 2) || (X == 3)
into (X & 1) == 2 and so SimplifyCFG tries to detect when this occurs so
that it can produce a switch instruction.
However, the legality checking was not sufficient to determine whether
or not this had occured. Correctly check this case by requiring that
the right-hand side of the comparison be a power of two.
This fixes PR26323.
llvm-svn: 258904
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
This allows us to create switches even if instcombine has munged two of the
incombing compares into one and some bit twiddling. This was motivated by enum
compares that are common in clang.
llvm-svn: 185632
This adds a transformation to SimplifyCFG that attemps to turn switch
instructions into loads from lookup tables. It works on switches that
are only used to initialize one or more phi nodes in a common successor
basic block, for example:
int f(int x) {
switch (x) {
case 0: return 5;
case 1: return 4;
case 2: return -2;
case 5: return 7;
case 6: return 9;
default: return 42;
}
This speeds up the code by removing the hard-to-predict jump, and
reduces code size by removing the code for the jump targets.
llvm-svn: 163302
This makes the job of the later optzn passes easier, allowing the vast amount of
icmp transforms to chew on it.
We transform 840 switches in gcc.c, leading to a 16k byte shrink of the resulting
binary on i386-linux.
The testcase from README.txt now compiles into
decl %edi
cmpl $3, %edi
sbbl %eax, %eax
andl $1, %eax
ret
llvm-svn: 124724
which is simpler than finding a place to insert in BB.
- Don't perform the 'if condition hoisting' xform on certain
i1 PHIs, as it interferes with switch formation.
This re-fixes "example 7", without breaking the world hopefully.
llvm-svn: 121764
when simplifying, allowing them to be eagerly turned into switches. This
is the last step required to get "Example 7" from this blog post:
http://blog.regehr.org/archives/320
On X86, we now generate this machine code, which (to my eye) seems better
than the ICC generated code:
_crud: ## @crud
## BB#0: ## %entry
cmpb $33, %dil
jb LBB0_4
## BB#1: ## %switch.early.test
addb $-34, %dil
cmpb $58, %dil
ja LBB0_3
## BB#2: ## %switch.early.test
movzbl %dil, %eax
movabsq $288230376537592865, %rcx ## imm = 0x400000017001421
btq %rax, %rcx
jb LBB0_4
LBB0_3: ## %lor.rhs
xorl %eax, %eax
ret
LBB0_4: ## %lor.end
movl $1, %eax
ret
llvm-svn: 121690