Summary:
Interfaces/ is the designated directory for these types of interfaces, and also removes the need for including them directly in IR/.
Differential Revision: https://reviews.llvm.org/D75886
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
This greatly simplifies the requirements for builders using this mechanism for managing variadic operands.
Differential Revision: https://reviews.llvm.org/D75317
This attribute details the segment sizes for operand groups within the operation. This revision add support for automatically populating this attribute in the declarative parser.
Differential Revision: https://reviews.llvm.org/D75315
This interface contains the necessary components to provide the same builtin behavior that terminators have. This will be used in future revisions to remove many of the hardcoded constraints placed on successors and successor operands. The interface initially contains three methods:
```c++
// Return a set of values corresponding to the operands for successor 'index', or None if the operands do not correspond to materialized values.
Optional<OperandRange> getSuccessorOperands(unsigned index);
// Return true if this terminator can have it's successor operands erased.
bool canEraseSuccessorOperand();
// Erase the operand of a successor. This is only valid to call if 'canEraseSuccessorOperand' returns true.
void eraseSuccessorOperand(unsigned succIdx, unsigned opIdx);
```
Differential Revision: https://reviews.llvm.org/D75314
This allows for simplifying OpDefGen, as well providing specializing accessors for the different successor counts. This mirrors the existing traits for operands and results.
Differential Revision: https://reviews.llvm.org/D75313
Summary:
The order of the operations has fallen out of sync as operations have been renamed and new ones have been added.
Differential Revision: https://reviews.llvm.org/D75540
Summary: This allows for attaching the attribute to CmpF as a proper argument, and thus enables the removal of a bunch of c++ code.
Differential Revision: https://reviews.llvm.org/D75539
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Instead of creating extra libraries we don't really need, collect a
list of all dialects and use that instead.
Differential Revision: https://reviews.llvm.org/D75221
Summary:
The RFC for this op is here: https://llvm.discourse.group/t/rfc-add-std-atomic-rmw-op/489
The std.atmomic_rmw op provides a way to support read-modify-write
sequences with data race freedom. It is intended to be used in the lowering
of an upcoming affine.atomic_rmw op which can be used for reductions.
A lowering to LLVM is provided with 2 paths:
- Simple patterns: llvm.atomicrmw
- Everything else: llvm.cmpxchg
Differential Revision: https://reviews.llvm.org/D74401
This revision add support for formatting successor variables in a similar way to operands, attributes, etc.
Differential Revision: https://reviews.llvm.org/D74789
When operations have optional attributes, or optional operands(i.e. empty variadic operands), the assembly format often has an optional section to represent these arguments. This revision adds basic support for defining an "optional group" in the assembly format to support this. An optional group is defined by wrapping a set of elements in `()` followed by `?` and requires the following:
* The first element of the group must be either a literal or an operand argument.
- This is because the first element must be optionally parsable.
* There must be exactly one argument variable within the group that is marked as the anchor of the group. The anchor is the element whose presence controls whether the group should be printed/parsed. An element is marked as the anchor by adding a trailing `^`.
* The group must only contain literals, variables, and type directives.
- Any attribute variables may be used, but only optional attributes can be marked as the anchor.
- Only variadic, i.e. optional, operand arguments can be used.
- The elements of a type directive must be defined within the same optional group.
An example of this can be seen with the assembly format for ReturnOp, which has a variadic number of operands.
```
def ReturnOp : ... {
let arguments = (ins Variadic<AnyType>:$operands);
// We only print the operands+types if there are a non-zero number
// of operands.
let assemblyFormat = "attr-dict ($operands^ `:` type($operands))?";
}
```
Differential Revision: https://reviews.llvm.org/D74681
This allows for injecting type constraints that are not direct 1-1 mappings, for example when one type is equal to the element type of another. This allows for moving over several more parsers to the declarative form.
Differential Revision: https://reviews.llvm.org/D74648
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.
Differential Revision: https://reviews.llvm.org/D74940
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary:
This trait takes three arguments: lhs, rhs, transformer. It verifies that the type of 'rhs' matches the type of 'lhs' when the given 'transformer' is applied to 'lhs'. This allows for adding constraints like: "the type of 'a' must match the element type of 'b'". A followup revision will add support in the declarative parser for using these equality constraints to port more c++ parsers to the declarative form.
Differential Revision: https://reviews.llvm.org/D74647
In the previous state, we were relying on forcing the linker to include
all libraries in the final binary and the global initializer to self-register
every piece of the system. This change help moving away from this model, and
allow users to compose pieces more freely. The current change is only "fixing"
the dialect registration and avoiding relying on "whole link" for the passes.
The translation is still relying on the global registry, and some refactoring
is needed to make this all more convenient.
Differential Revision: https://reviews.llvm.org/D74461
This CL refactors EDSCs to layer them better and break unnecessary
dependencies. After this refactoring, the top-level EDSC target only
depends on IR but not on Dialects anymore and each dialect has its
own EDSC directory.
This simplifies the layering and breaks cyclic dependencies.
In particular, the declarative builder + folder are made explicit and
are now confined to Linalg.
As the refactoring occurred, certain classes and abstractions that were not
paying for themselves have been removed.
Differential Revision: https://reviews.llvm.org/D74302
The refactored MemRefType::get() calls all intend to clone from another
memref type, with some modifications. In fact, some calls dropped memory space
during the cloning. Migrate them to the cloning API so that nothing gets
dropped if they are not explicitly listed.
It's close to NFC but not quite, as it helps with propagating memory spaces in
some places.
Differential Revision: https://reviews.llvm.org/D73296
Summary:
This revision switches over many operations to use the declarative methods for defining the assembly specification. This updates operations in the NVVM, ROCDL, Standard, and VectorOps dialects.
Differential Revision: https://reviews.llvm.org/D73407
Summary: The new internal representation of operation results now allows for accessing the result types to be more efficient. Changing the API to ArrayRef is more efficient and removes the need to explicitly materialize vectors in several places.
Differential Revision: https://reviews.llvm.org/D73429
Summary:
Remove 'valuesToRemoveIfDead' from PatternRewriter API. The removal
functionality wasn't implemented and we decided [1] not to implement it in
favor of having more powerful DCE approaches.
[1] https://github.com/tensorflow/mlir/pull/212
Reviewers: rriddle, bondhugula
Reviewed By: rriddle
Subscribers: liufengdb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72545