This code has been added a while ago and removing it does not trigger
any test failures. The false positives it was trying to suppress are
probably handled by other logic (ex: special handling of delegates).
llvm-svn: 162529
* when checking that a pointer or reference refers to appropriate storage for a type, also check the alignment and perform a null check
* check that references are bound to appropriate storage
* check that 'this' has appropriate storage in member accesses and member function calls
llvm-svn: 162523
With inlining, retain count checker starts tracking 'self' through the
init methods. The analyser results were too noisy if the developer
did not follow 'self = [super init]' pattern (which is common
especially in older code bases) - we reported self init anti-pattern AND
possible use-after-free. This patch teaches the retain count
checker to assume that [super init] does not fail when it's not consumed
by another expression. This silences the retain count warning that warns
about possibility of use-after-free when init fails, while preserving
all the other checking on 'self'.
llvm-svn: 162508
Until we have full support for pointers-to-members, we can at least
approximate some of their use by tracking null and non-null values.
We thus treat &A::m_ptr as a non-null void * symbol, and MemberPointer(0)
as a pointer-sized null constant.
This enables support for what is sometimes called the "safe bool" idiom,
demonstrated in the test case.
llvm-svn: 162495
This is trivial; the UserDefinedConversion always wraps a CXXMemberCallExpr
for the appropriate conversion function, so it's just a matter of
propagating that value to the CastExpr itself.
llvm-svn: 162494
not be set for implicit instantiations, remove the FIXME. This should be the
last bit for PR13634. The actual fix happened in r162238.
Motivation: it might be misleading to mark implicit instantiations as
Decl::isImplicit = true. Because then, in order to be consistent, we should
mark all instantiated members as implicit. But the user did actually type the
declaration for the member, but the compiler played with it a little bit.
llvm-svn: 162488
"castAs<...>->doSomething()". The analyzer was flagging these
as potential null dereferences, which is technically true. The
invariants appear to be that these casts should never fail, so
let's use castAs<> instead and avoid a runtime check.
llvm-svn: 162468
statement starts with an identifier for which name lookup will fail either way,
look at later tokens to disambiguate in order to improve error recovery.
llvm-svn: 162464
A CXXDefaultArgExpr wraps an Expr owned by a ParmVarDecl belonging to the
called function. In general, ExprEngine and Environment ought to treat this
like a ParenExpr or other transparent wrapper expression, with the inside
expression evaluated first.
However, if we call the same function twice, we'd produce a CFG that contains
the same wrapped expression twice, and we're not set up to handle that. I've
added a FIXME to the CFG builder to come back to that, but meanwhile we can
at least handle expressions that don't need to be explicitly evaluated:
literals. This probably handles many common uses of default parameters:
true/false, null, etc.
Part of PR13385 / <rdar://problem/12156507>
llvm-svn: 162453
name. This should reduce the amount of warning false positives about bad HTML
in comments when the comment author intended to put a reference to a template.
This change will also enable us parse the comment as intended in these cases.
Fixes part 1 of PR13374.
llvm-svn: 162407
The checker adds assumptions that the return values from the known APIs
are non-nil. Teach the checker about NSArray/NSMutableArray/NSOrderedSet
objectAtIndex, objectAtIndexedSubscript.
llvm-svn: 162398
As part of this change, I discovered that a few of our tests were not testing
the RangeConstraintManager. Luckily all of those passed when I moved them
over to use that constraint manager.
llvm-svn: 162384
Also rename 'getCurrentBlockCounter()' to 'blockCount()'.
This ripples a bunch of code simplifications; mostly aesthetic,
but makes the code a bit tighter.
llvm-svn: 162349
No need to have the "get", the word "conjure" is a verb too!
Getting a conjured symbol is the same as conjuring one up.
This shortening is largely cosmetic, but just this simple changed
cleaned up a handful of lines, making them less verbose.
llvm-svn: 162348
Add a new static function, buildMSAsmPieces, that will break these strings down
into mnemonic and operands. Upon a match failure, the idea is to use the
ErrorInfo from MatchInstructionImpl to inspect the mnemonic/operand and
decide a course of action. Unfortunately, there's no easy way to test this at
the moment.
llvm-svn: 162321
class extensions a little. clang now allows readonly property
with no ownership rule (assign, unsafe_unretained, weak, retain,
strong, or copy) with a readwrite property with an ownership rule.
// rdar://12103400
llvm-svn: 162319
Under -analyzer-ipa=basic-inlining, only C functions, blocks, and C++ static
member functions are inlined -- essentially, the calls that behave like simple
C function calls. This is essentially the behavior in Xcode 4.4.
C++ support still has some rough edges, and we don't want users to be worried
about them if they download and run their own checker. (In particular, the
massive number of false positives for analyzing LLVM comes from inlining
defensively-written code in contexts where more aggressive assumptions are
implicitly made. This problem is not unique to C++, but it is exacerbated by
the higher proportion of code that lives in header files in C++.)
The eventual goal is to be comfortable enough with C++ support (and simple
Objective-C support) to advance to -analyzer-ipa=inlining as the default
behavior. See the IPA design notes for more details.
llvm-svn: 162318
This reduces duplication across the Basic and Range constraint managers, and
keeps their internals free of dealing with the semantics of C++. It's still
a little unfortunate that the constraint manager is dealing with this at all,
but this is pretty much the only place to put it so that it will apply to all
symbolic values, even when embedded in larger expressions.
llvm-svn: 162313
to overwrite objects that might have been allocated into the type's
tail padding. This patch is missing some potential optimizations where
the destination is provably a complete object, but it's necessary for
correctness.
Patch by Jonathan Sauer.
llvm-svn: 162254
if a diagnostic is emitted outside of any source file. The fix mirrors the
corresponding code in TextDiagnosticPrinter. This required moving the
functional parts of SDiagRenderer into SDiagWriter so they can be reused in the
non-rendering codepath.
No functionality change.
llvm-svn: 162253
diagnostics for bad deployment targets and adding a few
more predicates. Includes a patch by Jonathan Schleifer
to enable ARC for ObjFW.
llvm-svn: 162252
The old error message stating that 'begin' was an undeclared identifier
is replaced with a new message explaining that the error is in the range
expression, along with which of the begin() and end() functions was
problematic if relevant.
Additionally, if the range was a pointer type or defines operator*,
attempt to dereference the range, and offer a FixIt if the modified range
works.
llvm-svn: 162248
By doing this in the constraint managers, we can ensure that ANY reference
whose value we don't know gets the effect, even if it's not a top-level
parameter.
llvm-svn: 162246
Add a flag PrintingPolicy::DontRecurseInDeclContext to provide "terse" output
from DeclPrinter. The motivation is to use DeclPrinter to print declarations
in user-friendly format, without overwhelming user with inner detail of the
declaration being printed.
Also add many tests for DeclPrinter. There are quite a few things that we
print incorrectly: search for WRONG in DeclPrinterTest.cpp -- and these tests
check our output against incorrect output, so that we can fix/refactor/rewrite
the DeclPrinter later.
llvm-svn: 162245
First, when synthesizing an explicitly strong/retain/copy property
of Class type, don't pretend during compatibility checking that the
property is actually assign. Instead, resolve incompatibilities
by secretly changing the type of *implicitly* __unsafe_unretained
Class ivars to be strong. This is moderately evil but better than
what we were doing.
Second, when synthesizing the setter for a strong property of
non-retainable type, be sure to use objc_setProperty. This is
possible when the property is decorated with the NSObject
attribute. This is an ugly, ugly corner of the language, and
we probably ought to deprecate it.
The first is rdar://problem/12039404; the second was noticed by
inspection while fixing the first.
llvm-svn: 162244
Author: Eric Christopher <echristo@apple.com>
Date: Thu Aug 16 23:50:46 2012 +0000
Add some caching here for the builtin types.
rdar://12117935
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@162066 91177308-0d34-0410-b5e6-96231b3b80d8
after fixing a thinko.
llvm-svn: 162243
Also, suggest 'readonly' even if the property has been given an ownership
attribute ('strong', 'weak', etc). This is used when properties are declared
readonly in the public interface but readwrite in a class extension.
<rdar://problem/11500004&11932285>
llvm-svn: 162220
Generating a sink is significantly different behavior from generating a
normal node, and a simple boolean parameter can be rather opaque. Per
offline discussion with Anna, adding new generation methods is the
clearest way to communicate intent.
No functionality change.
llvm-svn: 162215
Forgetting to at least cast the result was giving us Loc/NonLoc problems
in SValBuilder (hitting an assertion). But the standard (both C and C++)
does actually guarantee that && and || will result in the actual values
1 and 0, typed as 'int' in C and 'bool' in C++, and we can easily model that.
PR13461
llvm-svn: 162209
In Debug builds, VerifyDiagnosticConsumer checks any files with diagnostics
to make sure we got the chance to parse them for directives (expected-warning
and friends). This check previously relied on every parsed file having a
FileEntry, which broke the cling interpreter's test suite.
This commit changes the extra debug checking to mark a file as unparsed
as soon as we see a diagnostic from that file. At the very end, any files
that are still marked as unparsed are checked for directives, and a fatal
error is emitted (as before) if we find out that there were directives we
missed. -verify directives should always live in actual parsed files, not
in PCH or AST files.
Patch by Andy Gibbs, with slight modifications by me.
llvm-svn: 162171
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
Our current handling of 'throw' is all CFG-based: it jumps to a 'catch' block
if there is one and the function exit block if not. But this doesn't really
get the right behavior when a function is inlined: execution will continue on
the caller's side, which is always the wrong thing to do.
Even within a single function, 'throw' completely skips any destructors that
are to be run. This is essentially the same problem as @finally -- a CFGBlock
that can have multiple entry points, whose exit points depend on whether it
was entered normally or exceptionally.
Representing 'throw' as a sink matches our current (non-)handling of @throw.
It's not a perfect solution, but it's better than continuing analysis in an
inconsistent or even impossible state.
<rdar://problem/12113713>
llvm-svn: 162157
The CFG approximates @throw as a return statement, but that's not good
enough in inlined functions. Moreover, since Objective-C exceptions are
usually considered fatal, we should be suppressing leak warnings like we
do for calls to noreturn functions (like abort()).
The comments indicate that we were probably intending to do this all along;
it may have been inadvertantly changed during a refactor at one point.
llvm-svn: 162156
This was once an adapter class between callbacks that had CheckerContexts
and those that don't, but for a while now it's essentially just been a
wrapper around a ProgramPointTag. We can just pass the tag around instead.
No functionality change.
llvm-svn: 162155
specifier is unsed in a declaration; as it may not make the symbol
local to linkage unit as intended. Suggest using "hidden" visibility
attribute instead. // rdar://7703982
llvm-svn: 162138
both a waste of time, and prone to crash due to the use of the
error-recovery path in parser. Fixes <rdar://problem/12103608>, which
has been driving me nuts.
llvm-svn: 162081
reference, so &* on an empty WeakVH binds a reference to a dereferenced null
pointer. So don't do that; we have a perfectly good implicit conversion to
Value*.
llvm-svn: 162079
elaborated type specifier in template instantiation: such a specifier is always
valid because it must be specified within the definition of the type.
llvm-svn: 162068
function arguments and arguments for variadic functions are of a particular
type which is determined by some other argument to the same function call.
Usecases include:
* MPI library implementations, where these attributes enable checking that
buffer type matches the passed MPI_Datatype;
* for HDF5 library there is a similar usecase as MPI;
* checking types of variadic functions' arguments for functions like
fcntl() and ioctl().
llvm-svn: 162067
These require special handling, which we don't currently handle. This is being
put in place to ensure we don't do invalid symbol table lookups or try to parse
invalid assembly. The test cases just makes sure the latter isn't happening.
llvm-svn: 162050
This fixes several issues:
- removes egregious hack where PlistDiagnosticConsumer would forward to HTMLDiagnosticConsumer,
but diagnostics wouldn't be generated consistently in the same way if PlistDiagnosticConsumer
was used by itself.
- emitting diagnostics to the terminal (using clang's diagnostic machinery) is no longer a special
case, just another PathDiagnosticConsumer. This also magically resolved some duplicate warnings,
as we now use PathDiagnosticConsumer's diagnostic pruning, which has scope for the entire translation
unit, not just the scope of a BugReporter (which is limited to a particular ExprEngine).
As an interesting side-effect, diagnostics emitted to the terminal also have their trailing "." stripped,
just like with diagnostics emitted to plists and HTML. This required some tests to be updated, but now
the tests have higher fidelity with what users will see.
There are some inefficiencies in this patch. We currently generate the report graph (from the ExplodedGraph)
once per PathDiagnosticConsumer, which is a bit wasteful, but that could be pulled up higher in the
logic stack. There is some intended duplication, however, as we now generate different PathDiagnostics (for the same issue)
for different PathDiagnosticConsumers. This is necessary to produce the diagnostics that a particular
consumer expects.
llvm-svn: 162028
variables, function or label references. The former is a potential clobber.
The latter is either an input or an output. Unfortunately, it's difficult to
test this patch at the moment, but the added test case will eventually do so.
llvm-svn: 162026
and remove ASTContext reference (which was frequently bound to a dereferenced
null pointer) from the recursive lump of printPretty functions. In so doing,
fix (at least) one case where we intended to use the 'dump' mode, but that
failed because a null ASTContext reference had been passed in.
llvm-svn: 162011
This is analogous to our handling of pointer dereferences: if we
dereference a pointer that may or may not be null, we assume it's non-null
from then on.
While some implementations of C++ (including ours) allow you to call a
non-virtual method through a null pointer of object type, it is technically
disallowed by the C++ standard, and should not prune out any real paths in
practice.
[class.mfct.non-static]p1: A non-static member function may be called
for an object of its class type, or for an object of a class derived
from its class type...
(a null pointer value does not refer to an object)
We can also make the same assumption about function pointers.
llvm-svn: 161992
statement. For example,
if (x)
__asm out dx, ax __asm out dx, ax
results in a single inline asm statement (i.e., both "out dx, ax" statements are
predicated on if(x)).
llvm-svn: 161986
This is the other half of C++11 [class.cdtor]p4 (the destructor side
was added in r161915). This also fixes an issue with post-call checks
where the 'this' value was already being cleaned out of the state, thus
being omitted from a reconstructed CXXConstructorCall.
llvm-svn: 161981
as it does something unexpected (but gcc compatible).
Suggest use of __attribute__((visibility("hidden")))
on declaration instead. // rdar://7703982
llvm-svn: 161972
With reinterpret_cast, we can get completely unrelated types in a region
hierarchy together; this was resulting in CXXBaseObjectRegions being layered
directly on an (untyped) SymbolicRegion, whose symbol was from a completely
different type hierarchy. This was what was causing the internal buildbot to
fail.
Reverts r161911, which merely masked the problem.
llvm-svn: 161960
Previously we were checking -analyzer-ipa=dynamic-bifurcate only, and
unconditionally inlining everything else that had an available definition,
even under -analyzer-ipa=inlining (but not under -analyzer-ipa=none).
llvm-svn: 161916
C++11 [class.cdtor]p4: When a virtual function is called directly or
indirectly from a constructor or from a destructor, including during
the construction or destruction of the class’s non-static data members,
and the object to which the call applies is the object under
construction or destruction, the function called is the final overrider
in the constructor's or destructor's class and not one overriding it in
a more-derived class.
llvm-svn: 161915
The backend has to legalize i64 types by splitting them into two 32-bit pieces,
which leads to poor quality code. If we produce code for these intrinsics that
uses one-element vector types, which can live in Neon vector registers without
getting split up, then the generated code is much better. Radar 11998303.
llvm-svn: 161879
The reason for the recent fallout for "attaching comments to any redeclaration"
change are two false assumptions:
(1) a RawComment is attached to a single decl (not true for 'typedef struct X *Y'
where we want the comment to be attached to both X and Y);
(2) the whole redeclaration chain has only a single comment (obviously false, the
user can put a separate comment for each redeclaration).
To fix (1) I revert the part of the recent change where a 'Decl*' member was
introduced to RawComment. Now ASTContext has a separate DenseMap for mapping
'Decl*' to 'FullComment*'.
To fix (2) I just removed the test with this assumption. We might not parse
every comment in redecl chain if we already parsed at least one.
llvm-svn: 161878
tablegen code, found by -fcatch-undefined-behavior. I would appreciate if
someone more familiar with the NEON code could point me in the direction of how
to write a test for this. We appear to have essentially no test coverage
whatsoever for these builtins.
llvm-svn: 161827
The autorelease pool has not been implemented completely: we were adding
the autoreleased symbols to the state, but never looking at them. Until
we have a complete implementation, remove the overhead and comment out
the unused code.
llvm-svn: 161821
to set/get/remove the RefBinding.
No functional change here. Having these setter and getter methods will
make it much easier when replacing the underlining representation of
RefBindings (I just went through the exercise). It makes the code more
readable as well.
llvm-svn: 161820
While there is now some duplication between SimpleCall and the CXXInstanceCall
sub-hierarchy, this is much better than copy-and-pasting the devirtualization
logic shared by both instance methods and destructors.
An unfortunate side effect is that there is no longer a single CallEvent type
that corresponds to "calls written as CallExprs". For the most part this is a
good thing, but the checker callback eval::Call still takes a CallExpr rather
than a CallEvent (since we're not sure if we want to allow checkers to
evaluate other kinds of calls). A mistake here will be caught by a cast<> in
CheckerManager::runCheckersForEvalCall.
No functionality change.
llvm-svn: 161809
Virtual base regions are never layered, so simply stripping them off won't
necessarily get you to the correct casted class. Instead, what we want is
the same logic for evaluating dynamic_cast: strip off base regions if possible,
but add new base regions if necessary.
llvm-svn: 161808
This can occur with multiple inheritance, which jumps from one parent to
the other, and with virtual inheritance, since virtual base regions always
wrap the actual object and can't be nested within other base regions.
This also exposed some incorrect logic for multiple inheritance: even if B
is known not to derive from C, D might still derive from both of them.
llvm-svn: 161798
...and /do/ strip CXXBaseObjectRegions when casting to a virtual base class.
This allows us to enforce the invariant that a CXXBaseObjectRegion can always
provide an offset for its base region if its base region has a known class
type, by only allowing virtual bases and direct non-virtual bases to form
CXXBaseObjectRegions.
This does mean some slight problems for our modeling of dynamic_cast, which
needs to be resolved by finding a path from the current region to the class
we're trying to cast to.
llvm-svn: 161797
The AsmParser expects a single asm instruction, but valid ms-style inline asm
statements may contain multiple instructions.
This happens with asm blocks
__asm {
mov ebx, eax
mov ecx, ebx
}
or when multiple asm statements are adjacent to one another
__asm mov ebx, eax
__asm mov ecx, ebx
and
__asm mov ebx, eax __asm mov ecx, ebx
Currently, asm blocks are not properly handled.
llvm-svn: 161780
'templated' declaration for a function or class template to refer to
the function or class template itself, to which the documentation will
be attached. Fixes PR13593.
llvm-svn: 161762
current directory, propagate the framework and in-index-header-map
from the including header's information down to the included header's
information. Fixes <rdar://problem/11261291>.
As with everything header-map related, we can't really test this in
isolation within Clang, so it's tested elsewhere.
llvm-svn: 161759
Not only look for the comment near the declaration itself, but also walk the
redeclaration chain: the previous declaration might have had a documentation
comment.
llvm-svn: 161722
This was causing a crash when we tried to re-apply a base object region to
itself. It probably also caused incorrect offset calculations in RegionStore.
PR13569 / <rdar://problem/12076683>
llvm-svn: 161710
This mostly affects pure virtual methods, but would also affect parent
methods defined inline in the header when analyzing the child's source file.
llvm-svn: 161709
This check is also accessible through the debug.ExprInspection checker.
Like clang_analyzer_eval, you can use it to test the analyzer engine's
current state; the argument should be true or false to indicate whether or
not you expect the function to be inlined.
When used in the positive case (clang_analyzer_checkInlined(true)), the
analyzer prints the message "TRUE" if the function is ever inlined. However,
clang_analyzer_checkInlined(false) should never print a message; this asserts
that there should be no paths on which the current function is inlined, but
then there are no paths on which to print a message! (If the assertion is
violated, the message "FALSE" will be printed.)
This asymmetry comes from the fact that the only other chance to print a
message is when the function is analyzed as a top-level function. However,
when we do that, we can't be sure it isn't also inlined elsewhere (such as
in a recursive function, or if we want to analyze in both general or
specialized cases). Rather than have all checkInlined calls have an appended,
meaningless "FALSE" or "TOP-LEVEL" case, there is just no message printed.
void clang_analyzer_checkInlined(int);
For debugging purposes only!
llvm-svn: 161708
Instead of adding it to each individual subclass in
Targets.cpp, simply check the appropriate target
values.
Where before it was only on x86_64 and ppc64, it's now
also defined on mips64 and nvptx64.
Also add a bunch of negative tests to ensure it is *not*
defined on any other architectures while we're here.
llvm-svn: 161685
when we don't need to split.
In some cases we know that a method cannot have a different
implementation in a subclass:
- the class is declared in the main file (private)
- all the method declarations (including the ones coming from super
classes) are in the main file.
This can be improved further, but might be enough for the heuristic.
(When we are too aggressive splitting the state, efficiency suffers.
When we fail to split the state coverage might suffer.)
llvm-svn: 161681
things going on here that were problematic:
- We were missing the actual access check, or rather, it was suppressed
on account of being a redeclaration lookup.
- The access check would naturally happen during delay, which isn't
appropriate in this case.
- We weren't actually emitting dependent diagnostics associated with
class templates, which was unfortunate.
- Access was being propagated incorrectly for friend method declarations
that couldn't be matched at parse-time.
llvm-svn: 161652