All clients of BasicValueFactory should be using QualTypes instead, and
indeed it seems they are. This caught the (fortunately harmless) bug
fixed in the previous commit.
No intended functionality change.
llvm-svn: 163069
The current logic would actually create a float- or double-sized signed
integer value of 1, which is not at all the same.
No test because the value would be swallowed by an Unknown as soon as it
gets added or subtracted to the original value, but it enables the cleanup
in the next patch.
llvm-svn: 163068
Any future exceptions need to go INSIDE the test that checks if the
IdentifierInfo is non-null!
No functionality change. Thanks for the review, Ted.
llvm-svn: 163067
This allows us to correctly symbolicate the fields of structs returned by
value, as well as get the proper 'this' value for when methods are called
on structs returned by value.
This does require a moderately ugly hack in the StoreManager: if we assign
a "struct value" to a struct region, that now appears as a Loc value being
bound to a region of struct type. We handle this by simply "dereferencing"
the struct value region, which should create a LazyCompoundVal.
This should fix recent crashes analyzing LLVM and on our internal buildbot.
<rdar://problem/12137950>
llvm-svn: 163066
Previously, we preferred to get a result type by looking at the callee's
declared result type. This allowed us to handlereferences, which are
represented in the AST as lvalues of their pointee type. (That is, a call
to a function returning 'int &' has type 'int' and value kind 'lvalue'.)
However, this results in us preferring the original type of a function
over a casted type. This is a problem when a function pointer is casted
to another type, because the conjured result value will have the wrong
type. AdjustedReturnValueChecker is supposed to handle this, but still
doesn't handle the case where there is no "original function" at all,
i.e. where the callee is unknown.
Now, we instead look at the call expression's value kind (lvalue, xvalue,
or prvalue), and adjust the expr's type accordingly. This will have no
effect when the function is inlined, and will conjure the value that will
actually be used when it is not.
This makes AdjustedReturnValueChecker /nearly/ unnecessary; unfortunately,
the cases where it would still be useful are where we need to cast the
result of an inlined function or a checker-evaluated function, and in these
cases we don't know what we're casting /from/ by the time we can do post-
call checks. In light of that, remove AdjustedReturnValueChecker, which
was already not checking quite a few calls.
llvm-svn: 163065
This is similar to how we divide up the StaticAnalyzer libraries to separate
core functionality to what is clearly associated with Frontend actions.
llvm-svn: 163050
Fixes a hard-to-reach crash when calling a non-member overloaded operator
with arguments that may be callbacks.
Future-proofing: don't make the same assumption in MallocSizeofChecker.
Aside from possibly respecting attributes in the future, it might be
possible to call 'malloc' through a function pointer.
I audited all other uses of FunctionDecl::getIdentifier() in the analyzer;
they all now correctly test to see if the identifier is present before
using it.
llvm-svn: 163012
More generally, this adds a new configuration option 'c++-inlining', which
controls which C++ member functions can be considered for inlining. This
uses the new -analyzer-config table, so the cc1 arguments will look like this:
... -analyzer-config c++-inlining=[none|methods|constructors|destructors]
Note that each mode implies that all the previous member function kinds
will be inlined as well; it doesn't make sense to inline destructors
without inlining constructors, for example.
The default mode is 'methods'.
llvm-svn: 163004
PathDiagnostics are actually profiled and uniqued independently of the
path on which the bug occurred. This is used to merge diagnostics that
refer to the same issue along different paths, as well as by the plist
diagnostics to reference files created by the HTML diagnostics.
However, there are two problems with the current implementation:
1) The bug description is included in the profile, but some
PathDiagnosticConsumers prefer abbreviated descriptions and some
prefer verbose descriptions. Fixed by including both descriptions in
the PathDiagnostic objects and always using the verbose one in the profile.
2) The "minimal" path generation scheme provides extra information about
which events came from macros that the "extensive" scheme does not.
This resulted not only in different locations for the plist and HTML
diagnostics, but also in diagnostics being uniqued in the plist output
but not in the HTML output. Fixed by storing the "end path" location
explicitly in the PathDiagnostic object, rather than trying to find the
last piece of the path when the diagnostic is requested.
This should hopefully finish unsticking our internal buildbot.
llvm-svn: 162965
Basically, do the correct thing to fix the XML generation error, rather
than making it even worse by unilaterally dereferencing a null pointer.
llvm-svn: 162964
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
reanalyzed.
The policy on what to reanalyze should be in AnalysisConsumer with the
rest of visitation order logic.
There is no reason why ExprEngine needs to pass the Visited set to
CoreEngine, it can populate it itself.
llvm-svn: 162957
If the current path diagnostic does /not/ have files associated with it, we
were simply skipping on to the next diagnostic with 'continue'. But that
also skipped the close tag for the diagnostic's <dict> node.
Part of fixing our internal analyzer buildbot.
llvm-svn: 162939
initiated enum constant has the same value as another enum constant.
For instance:
enum test { A, B, C = -1, D, E = 1 };
Clang will warn that:
A and D both have value 0
B and E both have value 1
A few exceptions are made to keep the noise down. Enum constants which are
initialized to another enum constant, or an enum constant plus or minus 1 will
not trigger this warning. Also, anonymous enums are not checked.
llvm-svn: 162938
(__is_pod, __is_signed, etc.) to normal identifiers if they are
encountered in certain places in the grammar where we know that prior
versions of libstdc++ or libc++ use them, to still allow the use of
these keywords as type traits. Fixes <rdar://problem/9836262> and PR10184.
llvm-svn: 162937
Intorduces an abstraction for DynTypedNode which makes
is impossible to create in ways that introduced the bug;
also hides the implementation details of the template
magic away from the user and prepares the code for adding
QualType and TypeLoc bindings, as well as using DynTypedNode
instead of overloads for child and ancestor matching.
getNodeAs<T> was changed towards a non-pointer type, as
we'll want QualType and TypeLoc nodes to be returned
by value (the alternative would be to create new storage
which is prohibitively costly if we want to use it for
child / ancestor matching).
DynTypedNode is moved into a new header ASTTypeTraits.h,
as it is completely independent of the rest of the matcher
infrastructure - if the need comes up, we can move it to
a more common place.
The interface for users before the introduction of the
common storage change remains the same, minus the introduced
bug, for which a regression test was added.
llvm-svn: 162936
__objc_yes/__objc_no to (BOOL)1/(BOOL)0 when
BOOL is declared; otherwise it resorts to
default of 'signed char'. This is important to
selecting the correct Numeric API numberWithBool:
Can't have a clang test for this. Will checkin and
executable llvm test. // rdar://12156616
llvm-svn: 162922
within its own argument list. The original definition is used for the immediate
expansion, but the new definition is used for any subsequent occurences within
the argument list or after the expansion.
llvm-svn: 162906
This improves compatibility with gcc in this regard, and this file generation
can be ameliorated with GCOV_PREFIX and GCOV_PREFIX_STRIP. It's also useful if
your build directory doesn't specify -o <abspath> and it uses a recursive make
structure, so it's not relative to the toplevel.
Patch by Joshua Cranmer!
<rdar://problem/12179524>
llvm-svn: 162884
inlined function.
This resolves retain count checker false positives that are caused by
inlining ObjC and other methods. Essentially, if we are passing an
object to a method with "delegate" in the selector or a function pointer
as another argument, we should stop tracking the other parameters/return
value as far as the retain count checker is concerned.
llvm-svn: 162876
This heuristic addresses the case when a pointer (or ref) is passed
to a function, which initializes the variable (or sets it to something
other than '0'). On the branch where the inlined function does not
set the value, we report use of undefined value (or NULL pointer
dereference). The access happens in the caller and the path
through the callee would get pruned away with regular path pruning. To
solve this issue, we previously disabled diagnostic pruning completely
on undefined and null pointer dereference checks, which entailed very
verbose diagnostics in most cases. Furthermore, not all of the
undef value checks had the diagnostic pruning disabled.
This patch implements the following heuristic: if we pass a pointer (or
ref) to the region (on which the error is reported) into a function and
it's value is either undef or 'NULL' (and is a pointer), do not prune
the function.
llvm-svn: 162863
to define all macros for MIPS targets. Remove redundant virtual function
getArchDefines(). Two virtual functions for this task are really too much.
llvm-svn: 162853
CheckLValueConstantExpression.
Richard pointed out that using the address of a TLS variable is ok in a
core C++11 constant expression, as long as it isn't part of the eventual
result of constant expression evaluation. Having the check in
CheckLValueConstantExpression accomplishes this.
llvm-svn: 162850
Summary:
The problem was with the following sequence:
#pragma push_macro("long")
#undef long
#pragma pop_macro("long")
in case when "long" didn't represent a macro.
Fixed crash and removed code duplication for #undef/pop_macro case. Added regression tests.
Reviewers: doug.gregor, klimek
Reviewed By: doug.gregor
CC: cfe-commits, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D31
llvm-svn: 162845
This makes Clang produce an error for code such as:
__thread int x;
int *p = &x;
The lvalue of a thread-local variable cannot be evaluated at compile
time.
llvm-svn: 162835
a comma separated collection of key:value pairs (which are strings). This
allows a general way to provide analyzer configuration data from the command line.
No clients yet.
llvm-svn: 162827
In C++, objects being returned on the stack are actually copy-constructed into
the return value. That means that when a temporary is returned, it still has
to be destroyed, i.e. the returned expression will be wrapped in an
ExprWithCleanups node. Our "returning stack memory" checker needs to look
through this node to see if we really are returning an object by value.
PR13722
llvm-svn: 162817
Summary:
Summary: Keep history of macro definitions and #undefs with corresponding source locations, so that we can later find out all macros active in a specified source location. We don't save the history in PCH (no need currently). Memory overhead is about sizeof(void*)*3*<number of macro definitions and #undefs>+<in-memory size of all #undef'd macros>
I've run a test on a file composed of 109 .h files from boost 1.49 on x86-64 linux.
Stats before this patch:
*** Preprocessor Stats:
73222 directives found:
19171 #define.
4345 #undef.
#include/#include_next/#import:
5233 source files entered.
27 max include stack depth
19210 #if/#ifndef/#ifdef.
2384 #else/#elif.
6891 #endif.
408 #pragma.
14466 #if/#ifndef#ifdef regions skipped
80023/451669/1270 obj/fn/builtin macros expanded, 85724 on the fast path.
127145 token paste (##) operations performed, 11008 on the fast path.
Preprocessor Memory: 5874615B total
BumpPtr: 4399104
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
Stats with this patch:
...
Preprocessor Memory: 7541687B total
BumpPtr: 6066176
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
In my test increase in memory usage is about 1.7Mb, which is ~28% of initial preprocessor's memory usage and about 0.8% of clang's total VMM allocation.
As for CPU overhead, it should only be noticeable when iterating over all macros, and should mostly consist of couple extra dereferences and one comparison per macro + skipping of #undef'd macros. It's less trivial to measure, though, as the preprocessor consumes a very small fraction of compilation time.
Reviewers: doug.gregor, klimek, rsmith, djasper
Reviewed By: doug.gregor
CC: cfe-commits, chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D28
llvm-svn: 162810
into the correct types when pulling them out in the result
callback in a type safe way.
This is also the base change for multiple things that will
allow handling things more generally and thus supporting more
of the AST, especially handling Type nodes.
Patch contributed by Michael Diamond.
llvm-svn: 162804
and when used in property type declaration, is handled as type
attribute. Do not issue the warning when declaraing the property.
// rdar://12173491
llvm-svn: 162801
Specifically, CallEventManager::getCaller was looking at the call site for
an inlined call and trying to see what kind of call it was, but it only
checked for CXXConstructExprClass. (It's not using an isa<> here to avoid
doing three more checks on the the statement class.)
This caused an unreachable when we actually did inline the constructor of a
temporary object.
PR13717
llvm-svn: 162792
When exiting a function, the analyzer looks for the last statement in the
function to see if it's a return statement (and thus bind the return value).
However, the search for "the last statement" was accepting statements that
were in implicitly-generated inlined functions (i.e. destructors). So we'd
go and get the statement from the destructor, and then say "oh look, this
function had no explicit return...guess there's no return value". And /that/
led to the value being returned being declared dead, and all our leak
checkers complaining.
llvm-svn: 162791
variables without a storage class within a function, to implement
CUDA B.2.5: "__shared__ and __constant__ variables have implied static
storage [duration]."
llvm-svn: 162788
We still need to translate the string, but this at least gets us one step
closer to using the more general EmitAsmStmt() codegen function. No functional
change intended.
llvm-svn: 162785
AsmStmts. This function is only used by GCCAsmStmts, however. Constraints need
to be properly computed before MSAsmStmts can use EmitAsmStmt. No functional
change intended.
llvm-svn: 162776
No test case since this is a debug option that we will never turn on by
default since it makes the leak checkers much less useful. (We'll only report
leaks at the end of analysis if -analyzer-purge=none.)
llvm-svn: 162772
This warns in two specific situations:
1) For potentially swapped function arguments, e.g.
void foo(bool, float);
foo(1.7, false);
2) Misplaced brackets around function call arguments, e.g.
bool InRange = fabs(a - b < delta);
Where the last argument in a function call is implicitly converted
from bool to float, and the function returns a float which gets
implicitly converted to bool.
Patch by Andreas Eckleder!
llvm-svn: 162763