A subsequent change intends to remove resolveListElementReference
entirely. This part of the removal can be split out for better
bisectability.
Change-Id: Ibd762d88fd2d1e2cc116a259e2a27a5e9f9a8b10
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43561
Change-Id: Ifb695041cef1964ad8a3102f448249501a9243f0
llvm-svn: 325886
Summary:
Only check whether the left-hand side type is a subclass (or equal to)
the right-hand side type.
This requires a further fix in handling !if expressions and in type
resolution.
Furthermore, reverse the order of superclasses so that resolveTypes will
find a least common ancestor at least in simple cases.
Add a test that used to be accepted without flagging the obvious type
error.
Change-Id: Ib366db1a4e6a079f1a0851e469b402cddae76714
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43559
llvm-svn: 325884
Summary:
Returns the size of a list. I have found this to be rather useful in some
development for the AMDGPU backend where we could simplify our .td files
by concatenating list<LLVMType> for complex intrinsics. Doing so requires
us to compute the position argument for LLVMMatchType.
Basically, the usage is in a pattern that looks somewhat like this:
list<LLVMType> argtypes =
!listconcat(base,
[llvm_any_ty, LLVMMatchType<!size(base)>]);
Change-Id: I360a0b000fd488d18bea412228230fd93722bd2c
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits, tpr
Differential Revision: https://reviews.llvm.org/D43553
llvm-svn: 325883
Summary:
In the case of !foreach(id, input-list, transform) where the type of
input-list is list<A> and the type of transform is B, we now correctly
deduce list<B> as the type of the !foreach.
Change-Id: Ia19dd65eecc5991dd648280ba6a15f6a20fd61de
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43555
llvm-svn: 325797
Summary:
This way, it should work even with complex operands.
Change-Id: Iaccf5bbb50bd5882a0ba5d59689e4381315fb361
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D43554
llvm-svn: 325796
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
They weren't used often enough to justify having two different interfaces. Push the responsiblity of creating a StringInit up to the caller.
llvm-svn: 304388
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
This forces the code to call StringInit::get on the string early and
avoids storing duplicates in std::string and sometimes allows pointer
comparisons instead of string comparisons.
llvm-svn: 288642
This avoid an extra construction of a std::string (and a heap
allocation) when the caller only has a StringRef but no std::string at
hand.
llvm-svn: 288610
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
It would end up doing the concatenations from the second multiclass twice. This occured because SetValue detected a self assignment when trying to set the value of NAME to a VarInit called NAME. NAME is special here and it will get cleaned up later. So add a flag to suppress the self assignment check for this case.
Strangely the self-assignment error was returning false indicating it wasn't an error, but it wasn't doing the right thing. So this also changes it to report an error.
This fixes the names of some AVX512 FMA instructions that showed this double expansion.
llvm-svn: 256725
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
We had not been trying hard enough to resolve def names inside multiclasses
that had complex concatenations, etc. Now we'll try harder.
Patch by Amaury Sechet!
llvm-svn: 237877
This patch was generated by a clang tidy checker that is being open sourced.
The documentation of that checker is the following:
/// The emptiness of a container should be checked using the empty method
/// instead of the size method. It is not guaranteed that size is a
/// constant-time function, and it is generally more efficient and also shows
/// clearer intent to use empty. Furthermore some containers may implement the
/// empty method but not implement the size method. Using empty whenever
/// possible makes it easier to switch to another container in the future.
Patch by Gábor Horváth!
llvm-svn: 226161
Ideally we would store the MultiClasses by value directly in the maps, but I had some trouble with that before and this at least fixes the leak.
llvm-svn: 223997
Upon further review I think the MultiClass is being copied into the map instead of being moved due to the copy constructor on the nested Record type. This ultimately got exposed when the vector in DefPrototype vector was changed to hold unique_ptrs in another commit. This caused gcc 4.7 to fail due to the use of the copy constructor on unique_ptr with the error pointing back to one of the insert calls from this commit. Not sure why clang was able to build.
This reverts commit 710cdf729f84b428bf41aa8d32dbdb35fff79fde.
llvm-svn: 222971
The previous patch had effect, but missed this one. It seems MSVC
gets ADL-confused by the calls where the first argument is a function call?
llvm-svn: 222968
It was failing with this kind of error:
C:\b\build\slave\CrWinClang\build\src\third_party\llvm\lib\TableGen\TGParser.cpp(1243) : error C2668: 'llvm::make_unique' : ambiguous call to overloaded function
C:\b\build\slave\CrWinClang\build\src\third_party\llvm\include\llvm/ADT/STLExtras.h(408): could be 'std::unique_ptr<llvm::Record,std::default_delete<_Ty>> llvm::make_unique<llvm::Record,std::string,llvm::SMLoc&,llvm::RecordKeeper&,bool>(std::string &&,llvm::SMLoc &,llvm::RecordKeeper &,bool &&)'
with
[
_Ty=llvm::Record
]
C:\b\depot_tools\win_toolchain\vs2013_files\win8sdk\bin\..\..\VC\include\memory(1637): or 'std::unique_ptr<llvm::Record,std::default_delete<_Ty>> std::make_unique<llvm::Record,std::string,llvm::SMLoc&,llvm::RecordKeeper&,bool>(std::string &&,llvm::SMLoc &,llvm::RecordKeeper &,bool &&)' [found using argument-dependent lookup]
with
[
_Ty=llvm::Record
]
while trying to match the argument list '(std::string, llvm::SMLoc, llvm::RecordKeeper, bool)'
llvm-svn: 222967
By class-instance values I mean 'Class<Arg>' in 'Class<Arg>.Field' or in
'Other<Class<Arg>>' (syntactically s SimpleValue). This is to differentiate
from unnamed/anonymous record definitions (syntactically an ObjectBody) which
are not affected by this change.
Consider the testcase:
class Struct<int i> {
int I = !shl(i, 1);
int J = !shl(I, 1);
}
class Class<Struct s> {
int Class_J = s.J;
}
multiclass MultiClass<int i> {
def Def : Class<Struct<i>>;
}
defm Defm : MultiClass<2>;
Before this fix, DefmDef.Class_J yields !shl(I, 1) instead of 8.
This is the sequence of events. We start with this:
multiclass MultiClass<int i> {
def Def : Class<Struct<i>>;
}
During ParseDef the anonymous object for the class-instance value is created:
multiclass Multiclass<int i> {
def anonymous_0 : Struct<i>;
def Def : Class<NAME#anonymous_0>;
}
Then class Struct<i> is added to anonymous_0. Also Class<NAME#anonymous_0> is
added to Def:
multiclass Multiclass<int i> {
def anonymous_0 {
int I = !shl(i, 1);
int J = !shl(I, 1);
}
def Def {
int Class_J = NAME#anonymous_0.J;
}
}
So far so good but then we move on to instantiating this in the defm
by substituting the template arg 'i'.
This is how the anonymous prototype looks after fully instantiating.
defm Defm = {
def Defmanonymous_0 {
int I = 4;
int J = !shl(I, 1);
}
Note that we only resolved the reference to the template arg. The
non-template-arg reference in 'J' has not been resolved yet.
Then we go on to instantiating the Def prototype:
def DefmDef {
int Class_J = NAME#anonymous_0.J;
}
Which is resolved to Defmanonymous_0.J and then to !shl(I, 1).
When we fully resolve each record in a defm, Defmanonymous_0.J does get set
to 8 but that's too late for its use.
The patch adds a new attribute to the Record class that indicates that this
def is actually a class-instance value that may be *used* by other defs in a
multiclass. (This is unlike regular defs which don't reference each other and
thus can be resolved indepedently.) They are then fully resolved before the
other defs while the multiclass is instantiated.
I added vg_leak to the new test. I am not sure if this is necessary but I
don't think I have a way to test it. I can also check in without the XFAIL
and let the bots test this part.
Also tested that X86.td.expanded and AAarch64.td.expanded were unchange before
and after this change. (This issue triggering this problem is a WIP patch.)
Part of <rdar://problem/17688758>
llvm-svn: 217886
It also allows nested { } expressions, as now that they are sized, we can merge pull bits from the nested value.
In the current behaviour, everything in { } must have been convertible to a single bit.
However, now that binary literals are sized, its useful to be able to initialize a range of bits.
So, for example, its now possible to do
bits<8> x = { 0, 1, { 0b1001 }, 0, 0b0 }
llvm-svn: 215086
Instead of these becoming an integer literal internally, they now become bits<n> values.
Prior to this change, 0b001 was 1 bit long. This is confusing as clearly the user gave 3 bits.
This new type holds both the literal value and the size, and so can ensure sizes match on initializers.
For example, this used to be legal
bits<1> x = 0b00;
but now it must be written as
bits<2> x = 0b00;
llvm-svn: 215084
Instead allow the variable to be declared, but don't attach an initializer. This allows more than a single error to be emitted before we exit.
Test case to follow soon in another patch.
llvm-svn: 214375
This is currently for assigning from one bit init to another. It can easily be extended to other types.
Test to follow soon in another patch.
llvm-svn: 214374
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
Summary:
It concatenates two or more lists. In addition to the !strconcat semantics
the lists must have the same element type.
My overall aim is to make it easy to append to Instruction.Predicates
rather than override it. This can be done by concatenating lists passed as
arguments, or by concatenating lists passed in additional fields.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D3506
llvm-svn: 208183
Even within a multiclass, we had been generating concrete implicit anonymous
defs when parsing values (generally in value lists). This behavior was
incorrect, and led to errors when multiclass parameters were used in the
parameter list of the implicit anonymous def.
If we had some multiclass:
multiclass mc<string n> {
... : SomeClass<SomeOtherClass<n> >
The capture of the multiclass parameter 'n' would not work correctly, and
depending on how the implicit SomeOtherClass was used, either TableGen would
ignore something it shouldn't, or would crash.
To fix this problem, when inside a multiclass, we generate prototype anonymous
defs for implicit anonymous defs (just as we do for explicit anonymous defs).
Within the multiclass, the current record prototype is populated with a node
that is essentially: !cast<SomeOtherClass>(!strconcat(NAME, anon_value_name)).
This is then resolved to the correct concrete anonymous def, in the usual way,
when NAME is resolved during multiclass instantiation.
llvm-svn: 198348
TableGen had been generating a different name for an anonymous multiclass's
NAME for every def in the multiclass. This had an unfortunate side effect: it
was impossible to reference one def within the multiclass from another (in the
parameter list, for example). By making sure we only generate an anonymous name
once per multiclass (which, as it turns out, requires only changing the name
parameter to reference type), we can now concatenate NAME within the multiclass
with a def name in order to generate a reference to that def.
This does not matter so much, in and of itself, but is necessary for a
follow-up commit that will fix variable capturing in implicit anonymous
multiclass defs (and that is important).
llvm-svn: 198340
Backends like OptParserEmitter assume that record names can be used as valid
identifiers.
The period '.' in generated anonymous names broke that assumption, causing a
build-time error and in practice forcing all records to be named.
llvm-svn: 197869
LLVM's coding standards recommend raw_ostream and MemoryBuffer for
reading and writing text.
This has the side effect of allowing clang to compile more of Support
and TableGen in the Microsoft C++ ABI.
llvm-svn: 187826
DAG arguments can optionally be named:
(dag node, node:$name)
With this change, the node is also optional:
(dag node, node:$name, $name)
The missing node is treated as an UnsetInit, so the above is equivalent
to:
(dag node, node:$name, ?:$name)
This syntax is useful in output patterns where we currently require the
types of variables to be repeated:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr i32:$b, i32:$c)>;
This is preferable:
def : Pat<(subc i32:$b, i32:$c), (SUBCCrr $b, $c)>;
llvm-svn: 177843
It's clearer and additionally this gets rid of the usage of `DefmID`,
which doesn't really correspond to anything in the language (it was just
used in the name of this parsing function which parsed a `MultiClassID`
and returned that multiclass's record).
This area of the code still needs a lot of work.
llvm-svn: 171938
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Some of these dyn_cast<>'s would be better phrased as isa<> or cast<>.
That will happen in a future patch.
There are also two dyn_cast_or_null<>'s slipped in instead of
dyn_cast<>'s, since they were causing crashes with just dyn_cast<>.
llvm-svn: 165646
This is a mechanical change of dynamic_cast<> to dyn_cast<>. A number of
these uses are actually more like isa<> or cast<>, and will be changed
to the semanticaly appropriate one in a future patch.
llvm-svn: 165291