The assembler backend will relax to the long form if necessary. This removes a swap from long form to short form in the MCInstLowering code. Selecting the long form used to be required by the old JIT.
llvm-svn: 225242
condition to match a blend.
This prevents optimizations that work on VSELECT to perform invalid
transformations. Indeed, the optimized condition does not match the vector
boolean content that is expected and bad things may happen.
This patch yields the exact same code on the whole test-suite + specs (-O3 and
-O3 -march=core-avx2), it improves one test case (vector-blend.ll) and fixes a
bug reduced in vselect-avx.ll.
<rdar://problem/18819506>
llvm-svn: 221429
For 8-bit divrems where the remainder is used, we used to generate:
divb %sil
shrw $8, %ax
movzbl %al, %eax
That was to avoid an H-reg access, which is problematic mainly because
it isn't possible in REX-prefixed instructions.
This patch optimizes that to:
divb %sil
movzbl %ah, %eax
To do that, we explicitly extend AH, and extract the L-subreg in the
resulting register. The extension is done using the NOREX variants of
MOVZX. To support signed operations, MOVSX_NOREX is also added.
Further, this introduces a new SDNode type, [us]divrem_ext_hreg, which is
then lowered to a sequence containing a single zext (rather than 2).
Differential Revision: http://reviews.llvm.org/D6064
llvm-svn: 221176
Currently, @llvm.smul.with.overflow.i8 expands to 9 instructions, where
3 are really needed.
This adds X86ISD::UMUL8/SMUL8 SD nodes, and custom lowers them to
MUL8/IMUL8 + SETO.
i8 is a special case because there is no two/three operand variants of
(I)MUL8, so the first operand and return value need to go in AL/AX.
Also, we can't write patterns for these instructions: TableGen refuses
patterns where output operands don't match SDNode results. In this case,
instructions where the output operand is an implicitly defined register.
A related special case (and FIXME) exists for MUL8 (X86InstrArith.td):
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]
Ideally, these go away with UMUL8, but we still need to improve TableGen
support of implicit operands in patterns.
Before this change:
movsbl %sil, %eax
movsbl %dil, %ecx
imull %eax, %ecx
movb %cl, %al
sarb $7, %al
movzbl %al, %eax
movzbl %ch, %esi
cmpl %eax, %esi
setne %al
After:
movb %dil, %al
imulb %sil
seto %al
Also, remove a made-redundant testcase for PR19858, and enable more FastISel
ALU-overflow tests for SelectionDAG too.
Differential Revision: http://reviews.llvm.org/D5809
llvm-svn: 220516
Summary:
Fix pr21099
The pseudocode of what we were doing (spread through two functions) was:
if (operand.doesNotFitIn32Bits())
Opc.initializeWithFoo();
if (operand < 0)
operand = -operand;
if (operand.doesFitIn8Bits())
Opc.initializeWithBar();
else if (operand.doesFitIn32Bits())
Opc.initializeWithBlah();
doStuff(Opc);
So for operand == INT32_MIN, Opc was never initialized because the operand changes
from fitting in 32 bits to not fitting, causing the various bugs/error messages
noted by pr21099.
This patch adds an extra test at the beginning for this case, and an
llvm_unreachable to have better error message if the operand ends up
not fitting in 32-bits at the end.
Test Plan: new test + make check
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5655
llvm-svn: 219257
In the X86 backend, matching an address is initiated by the 'addr' complex
pattern and its friends. During this process we may reassociate and-of-shift
into shift-of-and (FoldMaskedShiftToScaledMask) to allow folding of the
shift into the scale of the address.
However as demonstrated by the testcase, this can trigger CSE of not only the
shift and the AND which the code is prepared for but also the underlying load
node. In the testcase this node is sitting in the RecordedNode and MatchScope
data structures of the matcher and becomes a deleted node upon CSE. Returning
from the complex pattern function, we try to access it again hitting an assert
because the node is no longer a load even though this was checked before.
Now obviously changing the DAG this late is bending the rules but I think it
makes sense somewhat. Outside of addresses we prefer and-of-shift because it
may lead to smaller immediates (FoldMaskAndShiftToScale is an even better
example because it create a non-canonical node). We currently don't recognize
addresses during DAGCombiner where arguably this canonicalization should be
performed. On the other hand, having this in the matcher allows us to cover
all the cases where an address can be used in an instruction.
I've also talked a little bit to Dan Gohman on llvm-dev who added the RAUW for
the new shift node in FoldMaskedShiftToScaledMask. This RAUW is responsible
for initiating the recursive CSE on users
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/076903.html) but it
is not strictly necessary since the shift is hooked into the visited user. Of
course it's safer to keep the DAG consistent at all times (e.g. for accurate
number of uses, etc.).
So rather than changing the fundamentals, I've decided to continue along the
previous patches and detect the CSE. This patch installs a very targeted
DAGUpdateListener for the duration of a complex-pattern match and updates the
matching state accordingly. (Previous patches used HandleSDNode to detect the
CSE but that's not practical here). The listener is only installed on X86.
I tested that there is no measurable overhead due to this while running
through the spec2k BC files with llc. The only thing we pay for is the
creation of the listener. The callback never ever triggers in spec2k since
this is a corner case.
Fixes rdar://problem/18206171
llvm-svn: 219009
Summary:
Mostly renaming the (not very explicit) variables Tmp0, .. Tmp4, and grouping
related statements together, along with a few lines of comments for the
surprising parts.
No functional change intended.
Test Plan: make check-all
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5088
llvm-svn: 216768
Summary:
Fixes http://llvm.org/bugs/show_bug.cgi?id=20016 reproducible on new
lea-5.ll case.
Also use RSP/RBP for x32 lea to save 1 byte used for 0x67 prefix in
ESP/EBP case.
Test Plan: lea tests modified to include x32/nacl and new test added
Reviewers: nadav, dschuff, t.p.northover
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D4929
llvm-svn: 216065
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.
This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.
llvm-svn: 214449
The logic for expanding atomics that aren't natively supported in
terms of cmpxchg loops is much simpler to express at the IR level. It
also allows the normal optimisations and CodeGen improvements to help
out with atomics, instead of using a limited set of possible
instructions..
rdar://problem/13496295
llvm-svn: 212119
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.
Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.
This should fix PR15840.
llvm-svn: 191165
When selecting the DAG (add (WrapperRIP ...), (FrameIndex ...)), X86 code had
spotted the FrameIndex possibility and was working out whether it could fold
the WrapperRIP into this.
The test for forming a %rip version is notionally whether we already have a
base or index register (%rip precludes both), but we were forgetting to account
for the register that would be inserted later to access the frame.
rdar://problem/15024520
llvm-svn: 190995
Previously LEA64_32r went through virtually the entire backend thinking it was
using 32-bit registers until its blissful illusions were cruelly snatched away
by MCInstLower and 64-bit equivalents were substituted at the last minute.
This patch makes it behave normally, and take 64-bit registers as sources all
the way through. Previous uses (for 32-bit arithmetic) are accommodated via
SUBREG_TO_REG instructions which make the types and classes agree properly.
llvm-svn: 183693
Add earlyclobber constaints to prevent input register being allocated as
the output register because, according to Intel spec [1], "If any pair
of the index, mask, or destination registers are the same, this
instruction results a UD fault."
---
[1] http://software.intel.com/sites/default/files/319433-014.pdf
llvm-svn: 183327
The MOV64ri64i32 instruction required hacky MCInst lowering because it
was allocated as setting a GR64, but the eventual instruction ("movl")
only set a GR32. This converts it into a so-called "MOV32ri64" which
still accepts a (appropriate) 64-bit immediate but defines a GR32.
This is then converted to the full GR64 by a SUBREG_TO_REG operation,
thus keeping everyone happy.
This fixes a typo in the opcode field of the original patch, which
should make the legact JIT work again (& adds test for that problem).
llvm-svn: 183068
The MOV64ri64i32 instruction required hacky MCInst lowering because it was
allocated as setting a GR64, but the eventual instruction ("movl") only set a
GR32. This converts it into a so-called "MOV32ri64" which still accepts a
(appropriate) 64-bit immediate but defines a GR32. This is then converted to
the full GR64 by a SUBREG_TO_REG operation, thus keeping everyone happy.
llvm-svn: 182991
Instead of having a bunch of separate MOV8r0, MOV16r0, ... pseudo-instructions,
it's better to use a single MOV32r0 (which will expand to "xorl %reg, %reg")
and obtain other sizes with EXTRACT_SUBREG and SUBREG_TO_REG. The encoding is
smaller and partial register updates can sometimes be avoided.
Until recently, this sequence was a barrier to rematerialization though. That
should now be fixed so it's an appropriate time to make the change.
llvm-svn: 182928