Summary:
In D77860, we have changed `getSymbolFlags()` return type to `Expected<uint32_t>`.
This change helps bubble the error further up the stack.
Reviewers: jhenderson, grimar, JDevlieghere, MaskRay
Reviewed By: jhenderson
Subscribers: hiraditya, MaskRay, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79075
YAML files were not being run during lit testing as there was no lit.local.cfg file. Once this was fixed, some buildbots would fail due to a StringRef that pointed to a std::string inside of a temporary llvm::Triple object. These issues are fixed here by making a local triple object that stays around long enough so the StringRef points to valid data. Fixed memory sanitizer bot bugs as well.
Differential Revision: https://reviews.llvm.org/D75390
YAML files were not being run during lit testing as there was no lit.local.cfg file. Once this was fixed, some buildbots would fail due to a StringRef that pointed to a std::string inside of a temporary llvm::Triple object. These issues are fixed here by making a local triple object that stays around long enough so the StringRef points to valid data. Also fixed an issue where strings for files in the file table could be added in opposite order due to parameters to function calls not having a strong ordering, which caused tests to fail. Added new arch specfic directories so when targets are not enabled, we continue to function just fine.
Differential Revision: https://reviews.llvm.org/D75390
YAML files were not being run during lit testing as there was no lit.local.cfg file. Once this was fixed, some buildbots would fail due to a StringRef that pointed to a std::string inside of a temporary llvm::Triple object. These issues are fixed here by making a local triple object that stays around long enough so the StringRef points to valid data. Also fixed an issue where strings for files in the file table could be added in opposite order due to parameters to function calls not having a strong ordering, which caused tests to fail.
Differential Revision: https://reviews.llvm.org/D75390
Summary:
This patch creates the llvm-gsymutil binary that can convert object files to GSYM using the --convert <path> option. It can also dump and lookup addresses within GSYM files that have been saved to disk.
To dump a file:
llvm-gsymutil /path/to/a.gsym
To perform address lookups, like with atos, on GSYM files:
llvm-gsymutil --address 0x1000 --address 0x1100 /path/to/a.gsym
To convert a mach-o or ELF file, including any DWARF debug info contained within the object files:
llvm-gsymutil --convert /path/to/a.out --out-file /path/to/a.out.gsym
Conversion highlights:
- convert DWARF debug info in mach-o or ELF files to GSYM
- convert symbols in symbol table to GSYM and don't convert symbols that overlap with DWARF debug info
- extract UUID from object files
- extract .text (read + execute) section address ranges and filter out any DWARF or symbols that don't fall in those ranges.
- if .text sections are extracted, and if the last gsym::FunctionInfo object has no size, cap the size to the end of the section the function was contained in
Dumping GSYM files will dump all sections of the GSYM file in textual format.
Reviewers: labath, aadsm, serhiy.redko, jankratochvil, xiaobai, wallace, aprantl, JDevlieghere, jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74883
Summary:
The Offset provides the offset within the function in a SourceLocation struct. This allows us to show the byte offset within a function. We also track offsets within inline functions as well. Updated the lookup tests to verify the offset for functions and inline functions.
0x1000: main + 32 @ /tmp/main.cpp:45
Reviewers: labath, aadsm, serhiy.redko, jankratochvil, xiaobai, wallace, aprantl, JDevlieghere
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74680
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.
== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.
By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.
This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.
== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".
== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).
When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.
When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.
Differential Revision: https://reviews.llvm.org/D71775
Summary:
The DWARF transformer is added as a class so it can be unit tested fully.
The DWARF is converted to GSYM format and handles many special cases for functions:
- omit functions in compile units with 4 byte addresses whose address is UINT32_MAX (dead stripped)
- omit functions in compile units with 8 byte addresses whose address is UINT64_MAX (dead stripped)
- omit any functions whose high PC is <= low PC (dead stripped)
- StringTable builder doesn't copy strings, so we need to make backing copies of strings but only when needed. Many strings come from sections in object files and won't need to have backing copies, but some do.
- When a function doesn't have a mangled name, store the fully qualified name by creating a string by traversing the parent decl context DIEs and then. If we don't do this, we end up having cases where some function might appear in the GSYM as "erase" instead of "std::vector<int>::erase".
- omit any functions whose address isn't in the optional TextRanges member variable of DwarfTransformer. This allows object file to register address ranges that are known valid code ranges and can help omit functions that should have been dead stripped, but just had their low PC values set to zero. In this case we have many functions that all appear at address zero and can omit these functions by making sure they fall into good address ranges on the object file. Many compilers do this when the DWARF has a DW_AT_low_pc with a DW_FORM_addr, and a DW_AT_high_pc with a DW_FORM_data4 as the offset from the low PC. In this case the linker can't write the same address to both the high and low PC since there is only a relocation for the DW_AT_low_pc, so many linkers tend to just zero it out.
Reviewers: aprantl, dblaikie, probinson
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74450
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
GCC says:
.../llvm/lib/DebugInfo/GSYM/FunctionInfo.cpp:195:12:
error: ‘InfoType’ is not a class, namespace, or enumeration
case InfoType::EndOfList:
^
Presumably, GCC thinks InfoType is a variable here. Work around it by
using the name IT as is done above.
Summary:
Lookup functions are designed to not fully decode a FunctionInfo, LineTable or InlineInfo, they decode only what is needed into a LookupResult object. This allows lookups to avoid costly memory allocations and avoid parsing large amounts of information one a suitable match is found.
LookupResult objects contain the address that was looked up, the concrete function address range, the name of the concrete function, and a list of source locations. One for each inline function, and one for the concrete function. This allows one address to turn into multiple frames and improves the signal you get when symbolicating addresses in GSYM files.
Reviewers: labath, aprantl
Subscribers: mgorny, hiraditya, llvm-commits, lldb-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70993
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
off_t apparently is just "long" on Win64, which is 32-bits, and
therefore not long enough to compare with UINT32_MAX. Use auto to follow
the surrounding code. uint64_t would also be fine.
This patch adds the ability to create GSYM files with GsymCreator, and read them with GsymReader. Full testing has been added for both new classes.
This patch differs from the original patch https://reviews.llvm.org/D53379 in that is uses a StringTableBuilder class from llvm instead of a custom version. Support for big and little endian files has been added. If the endianness matches the current host, we use efficient extraction for the header, address table and address info offset tables.
Differential Revision: https://reviews.llvm.org/D68744
llvm-svn: 374381
This patch adds the llvm::gsym::Header class which appears at the start of a stand alone GSYM file, or in the first bytes of the GSYM data in a GSYM section within a file. Added encode and decode methods with full error handling and full tests.
Differential Revision: https://reviews.llvm.org/D67666
llvm-svn: 372149
This patch adds encoding and decoding of the FunctionInfo objects along with full error handling and tests. Full details of the FunctionInfo encoding format appear in the FunctionInfo.h header file.
Differential Revision: https://reviews.llvm.org/D67506
llvm-svn: 372135
This patch adds the ability to create a gsym::LineTable object, populate it, encode and decode it and test all functionality.
The full format of the LineTable encoding is specified in the header file LineTable.h.
Differential Revision: https://reviews.llvm.org/D66602
llvm-svn: 371657
This patch adds the ability to encode and decode InlineInfo objects and adds test coverage. Error handling is introduced in the encoding and decoding which will be used from here on out for remaining patches.
Differential Revision: https://reviews.llvm.org/D66600
llvm-svn: 370936
The full GSYM patch started with: https://reviews.llvm.org/D53379
This patch add the ability to encode data using the new llvm::gsym::FileWriter class.
FileWriter is a simplified binary data writer class that doesn't require targets, target definitions, architectures, or require any other optional compile time libraries to be enabled via the build process. This class needs the ability to seek to different spots in the binary data that it produces to fix up offsets and sizes in GSYM data. It currently uses std::ostream over llvm::raw_ostream because llvm::raw_ostream doesn't support seeking which is required when encoding and decoding GSYM data.
AddressRange objects are encoded and decoded to be relative to a base address. This will be the FunctionInfo's start address if the AddressRange is directly contained in a FunctionInfo, or a base address of the containing parent AddressRange or AddressRanges. This allows address ranges to be efficiently encoded using ULEB128 encodings as we encode the offset and size of each range instead of full addresses. This also makes encoded addresses easy to relocate as we just need to relocate one base address.
Differential Revision: https://reviews.llvm.org/D63828
llvm-svn: 369587
Delete unnecessary getters of AddressRange.
Simplify AddressRange::size(): Start <= End check should be checked in an upper layer.
Delete isContiguousWith() that doesn't make sense.
Simplify AddressRanges::insert. Delete commented code. Fix it when more than 1 ranges are to be deleted.
Delete trailing newline.
llvm-svn: 364637
The full GSYM patch started with: https://reviews.llvm.org/D53379
In that patch we wanted to split up getting GSYM into the LLVM code base so we are not committing too much code at once.
This is a first in a series of patches where I only add the foundation classes along with complete unit tests. They provide the foundation for encoding and decoding a GSYM file.
File entries are defined in llvm::gsym::FileEntry. This class splits the file up into a directory and filename represented by uniqued string table offsets. This allows all files that are referred to in a GSYM file to be encoded as 1 based indexes into a global file table in the GSYM file.
Function information in stored in llvm::gsym::FunctionInfo. This object represents a contiguous address range that has a name and range with an optional line table and inline call stack information.
Line table entries are defined in llvm::gsym::LineEntry. They store only address, file and line information to keep the line tables simple and allows the information to be efficiently encoded in a subsequent patch.
Inline information is defined in llvm::gsym::InlineInfo. These structs store the name of the inline function, along with one or more address ranges, and the file and line that called this function. They also contain any child inline information.
There are also utility classes for address ranges in llvm::gsym::AddressRange, and string table support in llvm::gsym::StringTable which are simple classes.
The unit tests test all the APIs on these simple classes so they will be ready for the next patches where we will create GSYM files and parse GSYM files.
Differential Revision: https://reviews.llvm.org/D63104
llvm-svn: 364427