Previously this test case fired an assertion in getNode because we tried to create an insert_subvector with both input types the same size and the index pointing to half the vector width.
llvm-svn: 293446
Replaces an xor+movd/movq with an xorps which will be shorter in codesize, avoid an int-fpu transfer, allow modern cores to fast path the result during decode and helps other combines recognise an all-zero vector.
The only reason I can think of that we'd want to keep scalar_to_vector in this case is to help recognise the upper elts are undef but this doesn't seem to be a problem.
Differential Revision: https://reviews.llvm.org/D29097
llvm-svn: 293438
Support lowering AEABI TLS access (__aeabi_read_tp) with long calls.
This requires adjusting the call sequence to use an indirect call to get
full addressability.
Resolves PR31769!
llvm-svn: 293433
PACKUSWB converts Signed word to Unsigned byte, (the same about DW) and it can't be used for umin+truncate pattern.
AVX-512 VPMOVUS* instructions fit the pattern since they convert Unsigned to Unsigned.
See https://llvm.org/bugs/show_bug.cgi?id=31773
Differential Revision: https://reviews.llvm.org/D29196
llvm-svn: 293431
Summary:
Adds the following instructions:
* mfpmr
* mtpmr
* icblc
* icblq
* icbtls
Fix the scheduling for mtspr on e5500, which uses CFX0, instead of
SFX0/SFX1 as on e500mc.
Addresses PR 31538.
Differential Revision: https://reviews.llvm.org/D29002
llvm-svn: 293417
The matching code tries to canonicalize XOR to the left, but if there are two XORs and only one is a vnot, this canonicalization can prevent matching.
llvm-svn: 293402
The jumbled scalar loads will be sorted while building the tree and these accesses will be marked to generate shufflevector after the vectorized load with proper mask.
Reviewers: hfinkel, mssimpso, mkuper
Differential Revision: https://reviews.llvm.org/D26905
Change-Id: I9c0c8e6f91a00076a7ee1465440a3f6ae092f7ad
llvm-svn: 293386
Support for barrier synchronization between a subset of threads
in a CTA through one of sixteen explicitly specified barriers.
These intrinsics are not directly exposed in CUDA but are
critical for forthcoming support of OpenMP on NVPTX GPUs.
The intrinsics allow the synchronization of an arbitrary
(multiple of 32) number of threads in a CTA at one of 16
distinct barriers. The two intrinsics added are as follows:
call void @llvm.nvvm.barrier.n(i32 10)
waits for all threads in a CTA to arrive at named barrier #10.
call void @llvm.nvvm.barrier(i32 15, i32 992)
waits for 992 threads in a CTA to arrive at barrier #15.
Detailed description of these intrinsics are available in the PTX manual.
http://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions
Reviewers: hfinkel, jlebar
Differential Revision: https://reviews.llvm.org/D17657
llvm-svn: 293384
Summary:
Patch by Michele Scandale
(with a small tweak to 'CHECK-NOT' the last DILocation in the test)
Subscribers: bogner, llvm-commits
Differential Revision: https://reviews.llvm.org/D27980
llvm-svn: 293377
Summary: Along with https://reviews.llvm.org/D27804, debug locations need to be merged when hoisting store instructions as well. Not sure if just dropping debug locations would make more sense for this case, but as the branch instruction will have at least different discriminator with the hoisted store instruction, I think there will be no difference in practice.
Reviewers: aprantl, andreadb, danielcdh
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29062
llvm-svn: 293372
When the OperandsMapper creates virtual registers, it used to just create
plain scalar register with the right size. This may confuse the
instruction selector because we lose the information of the instruction
using those registers what supposed to do. The MachineVerifier complains
about that already.
With this patch, the OperandsMapper still creates plain scalar register,
but the expectation is for the mapping function to remap the type
properly. The default mapping function has been updated to do that.
rdar://problem/30231850
llvm-svn: 293362
In r292621, the recommit fixes a bug related with live interval update
after the partial redundent copy is moved.
This recommit solves an additional bug related to the lack of update of
subranges.
The original patch is to solve the performance problem described in
PR27827. Register coalescing sometimes cannot remove a copy because of
interference. But if we can find a reverse copy in one of the predecessor
block of the copy, the copy is partially redundent and we may remove the
copy partially by moving it to the predecessor block without the
reverse copy.
Differential Revision: https://reviews.llvm.org/D28585
Re-apply r292621
Revert "Revert rL292621. Caused some internal build bot failures in apple."
This reverts commit r292984.
Original patch: Wei Mi <wmi@google.com>
Subrange fix: Mostly Matthias Braun <matze@braunis.de>
llvm-svn: 293353
This is a minimal patch to avoid the infinite loop in:
https://llvm.org/bugs/show_bug.cgi?id=31751
But the general problem is bigger: we're not canonicalizing all of the min/max forms reported
by value tracking's matchSelectPattern(), and we don't define min/max consistently. Some code
uses matchSelectPattern(), other code uses matchers like m_Umax, and others have their own
inline definitions which may be subtly different from any of the above.
The reason that the test cases in this patch need a cast op to trigger is because we don't
(yet) canonicalize all min/max forms based on matchSelectPattern() in
canonicalizeMinMaxWithConstant(), but we do make min/max+cast transforms based on
matchSelectPattern() in visitSelectInst().
The location of the icmp transforms that trigger the inf-loop seems arbitrary at best, so
I'm moving those behind the min/max fence in visitICmpInst() as the quick fix.
llvm-svn: 293345
Summary: Small change to get the FREEP instruction to decode properly.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29193
llvm-svn: 293314
Accomplishes what r292982 was supposed to, which ended up
only really making the necessary test changes.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 293310
The interleaved access pass is an IR-to-IR transformation that runs before code
generation. It matches interleaved memory operations to target-specific
intrinsics (that are later lowered to load and store multiple instructions on
ARM/AArch64). We place tests for similar passes (e.g., GlobalMergePass) under
test/Transforms. This patch moves the InterleavedAccessPass tests out of
test/CodeGen and into target-specific directories under
test/Transforms/InterleavedAccess.
Although the pass is an IR pass, many of the existing tests were llc tests
rather opt tests. For example, the tests would check for ldN/stN instructions
generated by llc rather than the intrinsic calls the pass actually inserts.
Thus, this patch updates all tests to be opt tests that check for the inserted
intrinsics. We already have separate CodeGen tests that ensure we lower the
interleaved access intrinsics to their corresponding ldN/stN instructions. In
addition to migrating the tests to opt, this patch also performs some minor
clean-up (to ensure consistent naming, etc.).
Differential Revision: https://reviews.llvm.org/D29184
llvm-svn: 293309
Summary: This change prevent the signed value of cost from being negative as the value is passed as an unsigned argument.
Reviewers: mcrosier, jmolloy, qcolombet, javed.absar
Reviewed By: mcrosier, qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28871
llvm-svn: 293307
With the adjustPassManager interface that is now possible to use
custom early module passes.
Differential Revision: https://reviews.llvm.org/D29189
llvm-svn: 293300
This is fixing pr31761: BasicAA is deducing NoAlias
on the result of the GEP if the base pointer is itself NoAlias.
This is possible only if the NoAlias on the base pointer is
deduced with a non-sized query: this should guarantee that
the pointers are belonging to different memory allocation
and that the GEP can't legally jump from one to another.
Differential Revision: https://reviews.llvm.org/D29216
llvm-svn: 293293
This patch makes one change to GOT handling and two changes to N64's
relocation model handling. Furthermore, the jumptable encodings have
been corrected for static N64.
Big GOT handling is now done via a new SDNode MipsGotHi - this node is
unconditionally lowered to an lui instruction.
The first change to N64's relocation handling is the lifting of the
restriction that N64 always uses PIC. Now it is possible to target static
environments.
The second change adds support for 64 bit symbols and enables them by
default. Previously N64 had patterns for sym32 mode only. In this mode all
symbols are assumed to have 32 bit addresses. sym32 mode support
is selectable with attribute 'sym32'. A follow on patch for clang will
add the necessary frontend parameter.
This partially resolves PR/23485.
Thanks to Brooks Davis for reporting the issue!
This version corrects a "Conditional jump or move depends on uninitialised
value(s)" error detected by valgrind present in the original commit.
Reviewers: dsanders, seanbruno, zoran.jovanovic, vkalintiris
Differential Revision: https://reviews.llvm.org/D23652
llvm-svn: 293279
skip sub-subloops.
The logic to skip subloops dated from when this code was shared with the
cached case. Once it was factored out to only run in the case of
recomputed subloops it became a dangerous bug. If a subsubloop contained
an interfering instruction it would be silently skipped from the alias
sets for LICM.
With the old pass manager this was extremely hard to trigger as it would
require failing to visit these subloops with the LICM pass but then
visiting the outer loop somehow. I've not yet contrived any test case
that actually manages to trigger this.
But with the new pass manager we don't do the cross-loop caching hack
that the old PM does and so we recompute alias set information from
first principles. While this seems much cleaner and simpler it exposed
this bug and would subtly miscompile code due to failing to correctly
model the aliasing constraints of deeply nested loops.
llvm-svn: 293273
In case of a SIGN/ZERO_EXTEND of an incomplete vector type (using only a
partial number of available vector elements), WidenVecRes_Convert() used to
resort to scalarization.
This patch adds a handling of the (common) case where an input vector can be
found of same width as the widened result vector, by converting the node to
SIGN/ZERO_EXTEND_VECTOR_INREG.
Review: Eli Friedman
llvm-svn: 293268
The Windows on ARM target uses custom division for normal division as
the backend needs to insert division-by-zero checks. However, it is
designed to only handle non-vectorized division. ARM has custom
lowering for vectorized division as that can avoid loading registers
with the values and invoke a division routine for each one, preferring
to lower using NEON instructions. Fall back to the custom lowering for
the NEON instructions if we encounter a vectorized division.
Resolves PR31778!
llvm-svn: 293259
Summary:
This adds basic dead and redundant store elimination to
NewGVN. Unlike our current DSE, it will happily do cross-block DSE if
it meets our requirements.
We get a bunch of DSE's simple.ll cases, and some stuff it doesn't.
Unlike DSE, however, we only try to eliminate stores of the same value
to the same memory location, not just general stores to the same
memory location.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29149
llvm-svn: 293258
the main pipeline.
This is a very straight forward port. Nothing weird or surprising.
This brings the number of missing passes from the new PM's pipeline down
to three.
llvm-svn: 293249
Summary:
There are many NVVM intrinsics that we can't entirely get rid of, but
that nonetheless often correspond to target-generic LLVM intrinsics.
For example, if flush denormals to zero (ftz) is enabled, we can convert
@llvm.nvvm.ceil.ftz.f to @llvm.ceil.f32. On the other hand, if ftz is
disabled, we can't do this, because @llvm.ceil.f32 will be lowered to a
non-ftz PTX instruction. In this case, we can, however, simplify the
non-ftz nvvm ceil intrinsic, @llvm.nvvm.ceil.f, to @llvm.ceil.f32.
These transformations are particularly useful because they let us
constant fold instructions that appear in libdevice, the bitcode library
that ships with CUDA and essentially functions as its libm.
Reviewers: tra
Subscribers: hfinkel, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D28794
llvm-svn: 293244
With this the per-module pass pipeline is *extremely* close to the
legacy PM. The missing pieces are:
- PruneEH (or some equivalent)
- ArgumentPromotion
- LoopLoadElimination
- LoopUnswitch
I'm going to work through those in essentially that order but this seems
like a worthwhile incremental step toward the end state.
One difference in what I have here from the legacy PM is that I've
consolidated some of the per-function passes at the very end of the
pipeline into the main optimization function pipeline. The intervening
passes are *really* uninteresting and so this seems very likely to have
any effect other than minor improvement to locality.
Note that there are still some failures in the test suite, but the
compiler doesn't crash or assert.
Differential Revision: https://reviews.llvm.org/D29114
llvm-svn: 293241
The translation scheme is mostly cribbed from FastISel, and it's not entirely
convincing semantically. But it does seem to work in the common cases and allow
variables to be printed so it can't be all wrong.
llvm-svn: 293228
This change reverts:
r293061: "[InstCombine] Canonicalize guards for NOT OR condition"
r293058: "[InstCombine] Canonicalize guards for AND condition"
They miscompile cases like:
```
declare void @llvm.experimental.guard(i1, ...)
define void @test_guard_not_or(i1 %A, i1 %B) {
%C = or i1 %A, %B
%D = xor i1 %C, true
call void(i1, ...) @llvm.experimental.guard(i1 %D, i32 20, i32 30)[ "deopt"() ]
ret void
}
```
because they do transfer the `i32 20, i32 30` parameters to newly
created guard instructions.
llvm-svn: 293227
This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
llvm-svn: 293226
loop-unswitch in the main pipelines for the new PM.
All of these now work, and Clang built using this pipeline can build the
test suite and SPEC without hitting any asserts of ASan failures.
There are still some bugs hiding though -- 7 tests regress with the new
PM. I'm going to be investigating these, but it seems worthwhile to at
least get the pipelines in place so that others can play with them, and
they aren't completely broken.
Differential Revision: https://reviews.llvm.org/D29113
llvm-svn: 293225
R_X86_64_NONE can be emitted without a symbol associated (well,
in theory it should never be emitted in an ABI-compliant relocatable
object). So, if there's no symbol associated to a reloc, emit one
with an empty name, instead of crashing.
Ack'ed by Michael Spencer offline.
PR: 31768
llvm-svn: 293224
Summary:
This does not actually fix the testcase in PR31761 (discussion is
ongoing on the testcase), but does fix a bug it exposes, where stores
were not properly clobbering loads.
We accomplish this by unifying the memory equivalence infratructure
back into the normal congruence infrastructure, and then properly
destroying congruence classes when memory state leaders disappear.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29195
llvm-svn: 293216
We already have this fold when the lshr has one use, but it doesn't need that
restriction. We may be able to remove some code from foldShiftedShift().
Also, move the similar:
(X << C) >>u C --> X & (-1 >>u C)
...directly into visitLShr to help clean up foldShiftByConstOfShiftByConst().
That whole function seems questionable since it is called by commonShiftTransforms(),
but there's really not much in common if we're checking the shift opcodes for every
fold.
llvm-svn: 293215
1) Explicitly sets mayLoad/mayStore property in the tablegen files on load/store
instructions.
2) Updated the flags on a number of intrinsics indicating that they write
memory.
3) Added SDNPMemOperand flags for some target dependent SDNodes so that they
propagate their memory operand
Review: https://reviews.llvm.org/D28818
llvm-svn: 293200