Commit Graph

9 Commits

Author SHA1 Message Date
Hongtao Yu bd52495518 [CSSPGO] Undoing the concept of dangling pseudo probe
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.

I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.

Reviewed By: wenlei

Differential Revision: https://reviews.llvm.org/D104477
2021-06-18 15:14:11 -07:00
Hongtao Yu cef9b96b01 [CSSPGO] Report zero-count probe in profile instead of dangling probes.
Previously dangling samples were represented by INT64_MAX in sample profile while probes never executed were not reported. This was based on an observation that dangling probes were only at a smaller portion than zero-count probes. However, with compiler optimizations, dangling probes end up becoming at large portion of all probes in general and reporting them does not make sense from profile size point of view. This change flips sample reporting by reporting zero-count probes instead. This enabled dangling probe to be represented by none (missing entry in profile). This has a couple benefits:

1. Reducing sample profile size in optimize mode, even when the number of non-executed probes outperform the number of dangling probes, since INT64_MAX takes more space over 0 to encode.

2. Binary size savings. No need to encode dangling probe anymore, since missing probes are treated as dangling in the profile reader.

3. Reducing compiler work to track dangling probes. However, for probes that are real dead and removed, we still need the compiler to identify them so that they can be reported as zero-count, instead of mistreated as dangling probes.

4. Improving counts quality by respecting the counts already collected on the non-dangling copy of a probe. A probe, when duplicated, gets two copies at runtime. If one of them is dangling while the other is not, merging the two probes at profile generation time will cause the real samples collected on the non-dangling one to be discarded. Not reporting the dangling counterpart will keep the real samples.

5. Better readability.

6. Be consistent with non-CS dwarf line number based profile. Zero counts are trusted by the compiler counts inferencer while missing counts will be inferred by the compiler.

Note that the current patch does include any work for #3. There will be follow-up changes.

For #1, I've seen for a large Facebook service, the text profile is reduced by 7%. For extbinary profile, the size of  LBRProfileSection is reduced by 35%.

For #4, I have seen general counts quality for SPEC2017 is improved by 10%.

Reviewed By: wenlei, wlei, wmi

Differential Revision: https://reviews.llvm.org/D104129
2021-06-16 11:45:29 -07:00
Wenlei He aaa826fac1 [CSSPGO][llvm-profgen] Make extended binary the default output format
Make extended binary the default output format for CSSPGO. This avoids having to pass flag every time when generating profile. It also matches llvm-profdata where binary profile is the default (should we switch to extbinary as default for llvm-profdata?).

We plan to compress name table for context profile, which depends on the built-in compression of extbinary.

Differential Revision: https://reviews.llvm.org/D103650
2021-06-03 17:58:16 -07:00
Wenlei He fa14fd30ce [CSSPGO][llvm-profgen] Change default cold threshold for context merging
llvm-profgen uses profile summary based cold threshold to merge and trim cold context profile. This is to strike a good balance between profile size and performance.

We've been using 99.9% as the cutoff to save profile size without affecting performance. This change switch to use 99.9% instead of 99.9999% as default cold threshold cutoff for llvm-profgen.

Redundant switch csprof-cold-thres is also removed and tests cleaned up.

Differential Revision: https://reviews.llvm.org/D103071
2021-05-25 10:41:10 -07:00
Wenlei He 1410db70b9 [CSSPGO] Add attribute metadata for context profile
This changes adds attribute field for metadata of context profile. Currently we have an inline attribute that indicates whether the leaf frame corresponding to a context profile was inlined in previous build.

This will be used to help estimating inlining and be taken into account when trimming context. Changes for that in llvm-profgen will follow. It will also help tuning.

Differential Revision: https://reviews.llvm.org/D98823
2021-03-18 22:00:56 -07:00
wlei c460ef61d6 [CSSPGO][llvm-profgen] Change sample count of dangling probe in llvm-profgen
Differential Revision: https://reviews.llvm.org/D96811
2021-03-08 14:36:02 -08:00
wlei e10b73f646 [CSSPGO][llvm-profgen] Merge and trim profile for cold context to reduce profile size
This change allows merging and trimming cold context profile in llvm-profgen to solve profile size bloat problem. Currently when the profile's total sample is below threshold(supported by a switch), it will be considered cold and merged into a base context-less profile, which will at least keep the profile quality as good as the baseline(non-cs).

For example, two input profiles:
 [main @ foo @ bar]:60
 [main @ bar]:50
Under threshold = 100, the two profiles will be merge into one with the base context, get result:
 [bar]:110

Added two switches:
`--csprof-cold-thres=<value>`: Specified the total samples threshold for a context profile to be considered cold, with 100 being the default. Any cold context profiles will be merged into context-less base profile by default.
`--csprof-keep-cold`: Force profile generation to keep cold context profiles instead of dropping them. By default, any cold context will not be written to output profile.

Results:
Though not yet evaluating it with the latest CSSPGO, our internal branch shows neutral on performance but significantly reduce the profile size. Detailed evaluation on llvm-profgen with CSSPGO will come later.

Differential Revision: https://reviews.llvm.org/D94111
2021-02-04 11:05:03 -08:00
wlei c82b24f475 [CSSPGO][llvm-profgen] Pseudo probe based CS profile generation
This change implements profile generation infra for pseudo probe in llvm-profgen. During virtual unwinding, the raw profile is extracted into range counter and branch counter and aggregated to sample counter map indexed by the call stack context. This change introduces the last step and produces the eventual profile. Specifically, the body of function sample is recorded by going through each probe among the range and callsite target sample is recorded by extracting the callsite probe from branch's source.

Please refer https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s and https://reviews.llvm.org/D89707 for more context about CSSPGO and llvm-profgen.

**Implementation**

- Extended `PseudoProbeProfileGenerator` for pseudo probe based profile generation.
- `populateBodySamplesWithProbes` reading range counter is responsible for recording function body samples and inferring caller's body samples.
- `populateBoundarySamplesWithProbes` reading branch counter is responsible for recording call site target samples.
- Each sample is recorded with its calling context(named `ContextId`). Remind that the probe based context key doesn't include the leaf frame probe info, so the `ContextId` string is created from two part: one from the probe stack strings' concatenation and other one from the leaf frame probe.
- Added regression test

Test Plan:

ninja & ninja check-llvm

Differential Revision: https://reviews.llvm.org/D92998
2021-02-03 16:21:53 -08:00
wlei c681400b25 [CSSPGO][llvm-profgen] Virtual unwinding with pseudo probe
This change extends virtual unwinder to support pseudo probe in llvm-profgen. Please refer https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s and https://reviews.llvm.org/D89707 for more context about CSSPGO and llvm-profgen.

**Implementation**

- Added `ProbeBasedCtxKey` derived from `ContextKey` for sample counter aggregation. As we need string splitting to infer the profile for callee function, string based context introduces more string handling overhead, here we just use probe pointer based context.
- For linear unwinding, as inline context is encoded in each pseudo probe, we don't need to go through each instruction to extract range sharing same inliner. So just record the range for the context.
- For probe based context, we should ignore the top frame probe since it will be extracted from the address range. we defer the extraction in `ProfileGeneration`.
- Added `PseudoProbeProfileGenerator` for pseudo probe based profile generation.
- Some helper function to get pseduo probe info(call probe, inline context) from profiled binary.
- Added regression test for unwinder's output

The pseudo probe based profile generation will be in the upcoming patch.

Test Plan:

ninja & ninja check-llvm

Differential Revision: https://reviews.llvm.org/D92896
2021-01-13 11:02:58 -08:00