This patch collects operations that have users in a for loop and uses
them when loop invariant operations are detected and hoisted.
Reviewed By: bondhugula, vinayaka-polymage
Differential Revision: https://reviews.llvm.org/D99761
This fixes the resolution of Rec10.Zero in ListSlices.td.
As part of this, correct the definition of complete for ListInit such that
it's complete iff all the elements in the list are complete rather than
always being complete regardless of the elements. This is the reason
Rec10.TwoFive from ListSlices.td previously resolved despite being
incomplete like Rec10.Zero was
Depends on D100247
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D100253
PATH usage on Windows is case-insensitive. There could be situations
when toolchain path can't be obtained from PATH because of
case-sensitivity of the findVCToolChainViaEnvironment.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D100361
Handles lowering conv2d to linalg's convolution operator. This implementation
only supports floating point values but handles all strides, dilations, and
padding values.
Differential Revision: https://reviews.llvm.org/D100061
This fixes a subtle issue where:
svprf(pg, ptr, SV_ALL /*is sv_pattern instead of sv_prfop*/)
would be quietly accepted. With this change, the function declaration
guards that the third parameter is a `enum sv_prfop`. Previously `svprf`
would map directly to `__builtin_sve_svprfb`, which accepts the enum
operand as a signed integer and only checks that the incoming range is
valid, meaning that SV_ALL would be discarded as being outside the valid
immediate range, but would have allowed SV_VL1 without issuing a warning
(C) or error (C++).
Reviewed By: c-rhodes
Differential Revision: https://reviews.llvm.org/D100297
I recently ran into issues with aggregates and inheritance, I'm using
it for creating a type-safe library where most of the types are build
over "tagged" std::array. After bit of cleaning and enabling -Wall
-Wextra -pedantic I noticed clang only in my pipeline gives me warning.
After a bit of focusing on it I found it's not helpful, and contemplate
disabling the warning all together. After a discussion with other
library authors I found it's bothering more people and decided to fix
it.
Removes this warning:
template<typename T, int N> struct StdArray {
T contents[N];
};
template<typename T, int N> struct AggregateAndEmpty : StdArray<T,N> { };
AggregateAndEmpty<int, 3> p = {1, 2, 3}; // <-- warning here about omitted braces
Per the SPIR-V spec "2.16.2. Validation Rules for Shader Capabilities":
Composite objects in the StorageBuffer, PhysicalStorageBuffer,
Uniform, and PushConstant Storage Classes must be explicitly
laid out.
For other cases we don't need to attach the struct offsets.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D100386
- Add support for HLASM style integers. These are the decimal integers [0-9].
- HLASM does not support the additional prefixed integers like, `0b`, `0x`, octal integers and Masm style integers.
- To achieve this, a field `LexHLASMStyleIntegers` (similar to the `LexMasmStyleIntegers` field) is introduced in `MCAsmLexer.h` as well as a corresponding setter.
Note: This field could also go into MCAsmInfo.h. I used the previous precedent set by the `LexMasmIntegers` field.
Depends on https://reviews.llvm.org/D99286
Reviewed By: epastor
Differential Revision: https://reviews.llvm.org/D99374
The previous implementation was insufficient for checking statement
attribute mutual exclusion because attributed statements do not collect
their attributes one-at-a-time in the same way that declarations do. So
the design that was attempting to check for mutual exclusion as each
attribute was processed would not ever catch a mutual exclusion in a
statement. This was missed due to insufficient test coverage, which has
now been added for the [[likely]] and [[unlikely]] attributes.
The new approach is to check all of attributes that are to be applied
to the attributed statement in a group. This required generating
another DiagnoseMutualExclusions() function into AttrParsedAttrImpl.inc.
Overflows are never fun.
In most cases (in most of the code), they are rare,
because usually you e.g. don't have as many elements.
However, it's exceptionally easy to fall into this pitfail
in code that deals with images, because, assuming 4-channel 32-bit FP data,
you need *just* ~269 megapixel image to case an overflow
when computing at least the total byte count.
In [[ https://github.com/darktable-org/darktable | darktable ]], there is a *long*, painful history of dealing with such bugs:
* https://github.com/darktable-org/darktable/pull/7740
* https://github.com/darktable-org/darktable/pull/7419
* eea1989f2c
* 70626dd95b
* https://github.com/darktable-org/darktable/pull/670
* 38c69fb1b2
and yet they clearly keep resurfacing still.
It would be immensely helpful to have a diagnostic for those patterns,
which is what this change proposes.
Currently, i only diagnose the most obvious case, where multiplication
is directly widened with no other expressions inbetween,
(i.e. `long r = (int)a * (int)b` but not even e.g. `long r = ((int)a * (int)b)`)
however that might be worth relaxing later.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D93822
Currently, for any extern variable, if it doesn't have
section attribution, it will be put into a default ".extern"
btf DataSec. The initial design is to put every extern
variable in a DataSec so libbpf can use it.
But later on, libbpf actually requires extern variables
to put into special sections, e.g., ".kconfig", ".ksyms", etc.
so they can be used properly based on section name.
Andrii mentioned since ".extern" variables are
not actually used, it makes sense to remove it from
the compiler so libbpf does not need to deal with it,
esp. for static linking. The BTF for these extern variables
is still generated.
With this patch, I tested kernel selftests/bpf and all tests
passed. Indeed, removing ".extern" DataSec seems having no
impact.
Differential Revision: https://reviews.llvm.org/D100392
I've run into some cases where a large fraction of compile-time is
spent invalidating SCEV. One of the causes is forgetLoop(), which
walks all values that are def-use reachable from the loop header
phis. When invalidating a topmost loop, that might be close to all
values in a function. Additionally, it's fairly common for there to
not actually be anything to invalidate, but we'll still be performing
this walk again and again.
My first thought was that we don't need to continue walking the uses
if the current value doesn't have a SCEV expression. However, this
isn't quite right, because SCEV construction can skip over values
(e.g. for a chain of adds, we might only create a SCEV expression
for the final value).
What this patch does instead is to only walk the (full) def-use chain
of loop phis that have a SCEV expression. If there's no expression
for a phi, then we also don't have any dependent expressions to
invalidate.
Differential Revision: https://reviews.llvm.org/D100264
Adds the __clang_literal_encoding__ and __clang_wide_literal_encoding__
predefined macros to expose the encoding used for string literals to
the preprocessor.
We were not instantiating procedure pointer components. If the instantiation
contained errors, we were not reporting them. This resulted in internal errors
in later processing.
I fixed this by adding code in .../lib/Semantics/type.cpp in
InstantiateComponent() to handle a component with ProcEntityDetails. I also
added several tests for various good and bad instantiations of procedure
pointer components.
Differential Revision: https://reviews.llvm.org/D100341
https://lists.llvm.org/pipermail/openmp-dev/2021-March/003940.html reports
test failure in `openmp-offload-gpu.c`. The failure is, when using `-S` in the
clang driver, it still reports bitcode library doesn't exist. However, it is not
exposed in my local run and Phabiractor test. The reason it escaped from Phabricator
test is, the test machine doesn't have CUDA, so `LibDeviceFile` is empty. In this
case, the check of `OPT_S` will be hit, and we get "expected" result. However, if
the test machine has CUDA, `LibDeviceFile` will not be empty, then the check will
not be done, and it just proceeds, trying to add the bitcode library. The reason
it escaped from my local run is, I didn't build ALL targets, so this case was
marked UNSUPPORTED.
Reviewed By: kkwli0
Differential Revision: https://reviews.llvm.org/D98902
Introduce new m_current_process and m_continue_process variables that
keep the pointers to currently selected process. At this moment, this
is equivalent to m_debugged_process_up but it lays foundations for
the future multiprocess support.
Differential Revision: https://reviews.llvm.org/D100256
This allows one to cross-compile the header/object for a model in a
setup where the compiler is built on a system that cannot host the AOT
compiler. For example, if arm-hostable clang is desired, while the AOT
Tensorflow compiler can cross-compile to arm, it can't currently run on
arm.
The only alternative in that scenario would be to cross-compile clang
itself, but that gets complicated when trying to run tests after that.
Differential Revision: https://reviews.llvm.org/D99992
We already allow the comparison of the upper bits of 'IsAllOf' (allbits) patterns, but we can safely compare the known zero bits for 'IsAnyOf' (zerobits) patterns as well.
This fixes an issues where we are comparing a type wide than the number of vector elements, which avoids a regression mentioned in rGbaadbe04bf75.
These proposals make the same changes to both C++ and C and remove a
restriction on standard attributes appearing multiple times in the same
attribute list.
We could warn on the duplicate attributes, but do not. This is for
consistency as we do not warn on attributes duplicated within the
attribute specifier sequence. If we want to warn on duplicated
standard attributes, we should do so both for both situations:
[[foo, foo]] and [[foo]][[foo]].
This helps us avoid the uncomfortable reinterpret-casts. Avoiding the
reinterpret casts prevents us from tripping the sanitizers as well.
Reviewed By: lntue
Differential Revision: https://reviews.llvm.org/D100360
- In the SystemZAsmParser, there will be a few queries to the type of dialect it is (AD_ATT, AD_HLASM) in future patches.
- It would be nice to have two small helper functions `isParsingATT()` and `isParsingHLASM()`
- Putting this as a separate smaller patch allows us to remove its definitions from other dependent patches.
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D99891
Summary:
After D98740 the function attributes were changes to append rather than
overwrite when using the values defined in OMPKinds.def. One of the
OpenMPIRBuilder tests erroenously used `readnone` instead of `readonly` which
would cause a conflict and result in a broken module once `readonly` was
appended to it. This patch fixes the test to use the correct attributes.
Summary: Remove dispatchCast, evalCastFromNonLoc and evalCastFromLoc functions since their functionality has been moved to common evalCast function. Use evalCast instead.
Post-clean up patch for https://reviews.llvm.org/D96090 patch. The patch shall not change any behavior.
Differential Revision: https://reviews.llvm.org/D97277