After this patch all remaining tests should pass on macOS when replayed
from a reproducer.
To capture the reproducers:
./bin/llvm-lit ../llvm-project/lldb/test/ --param lldb-run-with-repro=capture
To replay the reproducers:
./bin/llvm-lit ../llvm-project/lldb/test/ --param lldb-run-with-repro=replay
AddressSanitizer-Unit :: ./Asan-i386-calls-Test/AddressSanitizer.LongJmpTest
AddressSanitizer-Unit :: ./Asan-i386-calls-Test/AddressSanitizer.SigLongJmpTest
AddressSanitizer-Unit :: ./Asan-i386-inline-Test/AddressSanitizer.LongJmpTest
AddressSanitizer-Unit :: ./Asan-i386-inline-Test/AddressSanitizer.SigLongJmpTest
These failures will be examined properly when time permits.
rdar://problem/62141412
Now that all of the statepoint related routines have classes with isa support, let's cleanup.
I'm leaving the (dead) utitilities in tree for a few days so that I can do the same cleanup downstream without breakage.
Starting with the obvious stuff. I initially tried to include the inline operand sequences too, but managed to get code which confused *me*. Since several parts of those are being entirely removed in the near future, I may defer that portion until the cleanup is done.
arr is a volatile non-local array.
This fixes a recent regression exposed by removing lvalue-to-rvalue
conversion of discarded volatile arrays. In passing, regularize the
rules we use to determine whether '(void)expr;' warns when expr is a
volatile glvalue.
Back when we had CallSite, we implemented the current Statepoint/ImmutableStatepoint structure in analogous manner. Now that CallSite has been removed, the structure used for statepoints looks decidely out of place. gc.statepoint is one of the small handful of intrinsics which are invokable. Because of this, it can't subclass IntrinsicInst as is idiomatic.
This change simply introduces the GCStatepointInst class, restructures the existing Statepoint/ImmutableStatepoint types to wrap it. I will be landing a series of changes to sink functionality into GCStatepointInst and updating callers to be more idiomatic.
In D34993, we discussed and concluded that we should drop `__real_
symbol from the symbol table, but I did the opposite in D50569.
This patch is to drop `__real_` symbol.
MaskRay's note: omitting `__real_` is important if it is undefined:
otherwise a subsequent link may error due to the undefined `__real_` in .dynsym
Differential Revision: https://reviews.llvm.org/D51283
Currently we can only eliminate call return pairs that either return the
result of the call or a dynamic constant. This patch removes that
limitation.
Differential Revision: https://reviews.llvm.org/D79660
OpenMP emits these for some reason, so handle them. Assume these use
4096 bytes by default, with a flag to override this. Also change the
related stack assumption for calls to have a flag.
Can't test this since I can't directly use the default expansion for
AMDGPU. It needs to scale the amount by the wave size, rather than use
the raw byte size value.
We do not have register classes for all possible vector
sizes, so round it up for extract vector element.
Also fixes selection of G_MERGE_VALUES when vectors are
not a power of two.
This has required to refactor getRegSplitParts() in way
that it can handle not just power of two vectors.
Ideally we would like RegSplitParts to be generated by
tablegen.
Differential Revision: https://reviews.llvm.org/D80457
Patch by Neil Dhar <dhar@alumni.duke.edu>
Current state machine for parsing tokens from response files in Windows
does not correctly handle the case where the last token is "". The current
implementation handles the last token by only adding it if it is not empty,
however this does not cover the case where the last token is meant to be
the empty string. We can cover this case by checking whether the state
machine was last in the UNQUOTED state, which indicates that the last
character of the input was a non-whitespace character.
Differential Revision: https://reviews.llvm.org/D78346
Summary:
Index is the proper type for storing shapes when constant folding, so
this fixes the previous code (which was using i64).
Differential Revision: https://reviews.llvm.org/D80600
- This allow us to specify the (minimal) alignment on an intrinsic's
arguments and, more importantly, the return value.
Differential Revision: https://reviews.llvm.org/D80422
- Argument attribute needs specifiying through `ArgIndex<n>`
(corresponding to `FirstArgIndex`) to distinguish explicitly from the
index number from the overloaded type list.
- In addition, `RetIndex` (corresponding to `ReturnIndex`) and
`FuncIndex` (corresponding to `FunctionIndex`) are introduced for us
to associate attributes on the return value and potentially function
itself.
Differential Revision: https://reviews.llvm.org/D80422
Many edge cases, e.g. wrapped ranges, can be processed
precisely without bailout. However it's very unlikely that
memory access with min/max integer offsets will be
classified as safe anyway.
Early bailout may help with ThinLTO where we can
drop unsafe parameters from summaries.
I just spent a bunch of time debugging a mysterious bug that ended being due to my SmallVector getting passed to the Args&... overload instead of the MutableArrayRef overload, with disastrous results.
I appreciate the intent of this API, but for a function that does a bunch of unsafe casts, adding in potential overload confusion is just too much C++ footgun. If we end up needing this functionality, having something like a separate `packArgs(Args&...) -> SmallVector` overload would be preferable.
Turns out this API is unused and untested (even out of tree as far as I can tell, modulo the optional passing of no args to the other invoke as I fixed in this patch), so it's an easy fix -- just delete it and touch up the other overload.
Differential Revision: https://reviews.llvm.org/D80607
If we have a memory instruction (e.g. a load), we shouldn't combine it away in
some trivial combine.
It's possible that, say, a call lives between the instructions. This could
modify the value loaded, making the load instructions not safe to fold.
Differential Revision: https://reviews.llvm.org/D80053
The reproducer don't model timeouts so tests that rely on them end up
with unexpected packets during replay. Skip them until we can handle
this scenario.