The arm condition codes for GE is N==V (and for LT is N!=V). If the source of
flags cannot set V (overflow), such as a cmp against #0, then we can use the
simpler PL and MI conditions that only check N. As these PL/MI conditions are
simpler than GE/LT, other passes like the peephole optimiser can have a better
time optimising away the redundant CMPs.
The exception is the VSEL instruction, which cannot take the PL code, so there
the transform favours GE.
Differential Revision: https://reviews.llvm.org/D64160
llvm-svn: 365117
The lowering was missing live-ins in certain cases, like a sequence of
multiple tMOVCCr_pseudo instructions. This would lead to a verifier
failure, and on pre-v6 Thumb CPSR would be incorrectly clobbered.
For reasons I don't completely understand, it's hard to get a sequence
of multiple tMOVCCr_pseudo instructions; the issue only seems to show up
with 64-bit comparisons where the result is zero-extended. I added some
extra testcases in case that changes in the future. Probably some
optimization opportunities here if anyone is interested. (@test_slt_not
is the case that was getting miscompiled.)
The code to check the liveness of CPSR was stolen from
X86ISelLowering.cpp; maybe it could be refactored into common helper,
but I have no idea where to put it.
Differential Revision: https://reviews.llvm.org/D54192
llvm-svn: 346355
The "dead" markings allow existing target-independent optimizations,
like MachineSink, to trigger more frequently. The CPSR defs would have
eventually been marked dead by LiveVariables, so this only affects
optimizations before regalloc.
The ARMBaseInstrInfo.cpp change is fixing a bug which is only visible
with this change: the transform adds a use to an otherwise dead def
of CPSR. This is covered by existing regression tests.
thumb2-tbh.ll breaks for Thumb1 due to MachineLICM changing the
generated code; I'll fix it in D53452.
Differential Revision: https://reviews.llvm.org/D53453
llvm-svn: 345420
Summary:
Expressions of the form x < 0 ? 0 : x; and x < -1 ? -1 : x can be lowered using bit-operations instead of branching or conditional moves
In thumb-mode this results in a two-instruction sequence, a shift followed by a bic or or while in ARM/thumb2 mode that has flexible second operand the shift can be folded into a single bic/or instructions. In most cases this results in smaller code and possibly less branches, and in no case larger than before.
Patch by Marten Svanfeldt.
Reviewers: fhahn, pbarrio
Reviewed By: pbarrio
Subscribers: efriedma, rogfer01, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42574
llvm-svn: 323869
Constants are crucial for code size in the ARM Thumb-1 instruction
set. The 16 bit instruction size often does not offer enough space
for immediate arguments. This means that additional instructions are
frequently used to load constants into registers. Since constants are
hoisted, this can lead to significant register spillage if they are
used multiple times in a single function. This can be avoided by
rematerialization, i.e. recomputing a constant instead of reloading
it from the stack. This patch fixes the rematerialization of literal
pool loads in the ARM Thumb instruction set.
Patch by Philip Ginsbach
Differential Revision: https://reviews.llvm.org/D33936
llvm-svn: 308004
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280