definitely have a path leading to them, and possibly have a path leading
to them; reflect that distinction in the warning text emitted.
llvm-svn: 129126
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
declaration as this results in a confusing error message,
instead of message related to missing property declaration.
// rdar://9106929
llvm-svn: 127682
diagnostic. Also, these attributes are commonly written with macros which we
actually pre-define, so instead of expanding the macro location, refer to the
instantiation location and name it using the macro loc.
llvm-svn: 127219
that was ignored in a few places (most notably, code
completion). Introduce Selector::getNameForSlot() for the common case
where we only care about the name. Audit all uses of
getIdentifierInfoForSlot(), switching many over to getNameForSlot(),
fixing a few crashers.
Fixed <rdar://problem/8939352>, a code-completion crasher.
llvm-svn: 125977
Warn if class for a deprecated class is implemented.
Warn if category for a deprecated class is implemented.
All under control of -Wdeprecated-implementations.
// rdar://8973810.
llvm-svn: 125545
is unqualified but its initialized is qualified.
This is for c only and fixes the imm. problem.
c++ is more involved and is wip.
// rdar://8979379
llvm-svn: 125386
when selector metadata is generated, which is triggered
by at least on class implementation. This is to match gcc's
behavior. // rdar://8851684.
llvm-svn: 124909
The rationale is that it is highly likely that the user's getter/setter isn't atomically implemented. Off by default.
Addresses rdar://8782645.
-Wcustom-atomic-properties and -Wimplicit-atomic-properties are under the -Watomic-properties group.
llvm-svn: 124609
error: no super class declared in @interface for 'XXX'
to be:
error: 'X' cannot use 'super' because it is a root class
The latter explains what the user actually did wrong.
Fixes: <rdar://problem/8904409>
llvm-svn: 124074
earlier revisions Clang was incorrectly warning
about an incomplete @implementation when a property
was getting synthesized. This got fixed somewhere
down the line.
llvm-svn: 123939
to allow us to explicitly control whether or
not Objective-C properties are default synthesized.
Currently this feature only works when using
the -fobjc-non-fragile-abi2 flag (so there is
no functionality change), but we can now turn
off this feature without turning off all the features
coupled with -fobjc-non-fragile-abi2.
llvm-svn: 122519
unknown type and there is a possibility that
at runtime method is resolved to a deprecated or
unavailable method. Addreses // rdar://8769853
llvm-svn: 122294
declared setter or getter in current class extension or one
of the other class extensions. Mark them as synthesized as
property will be synthesized when property with same name is
seen in the @implementation. This prevents bogus warning
about unimplemented methods to be issued for these methods.
Fixes // rdar://8747333
llvm-svn: 121597
@property declaration to the autogenerated methods. I'm uncertain
whether this should apply to attributes in general, but these are
a reasonable core.
Implements rdar://problem/8617301
llvm-svn: 118676
is that we need more information to decide the exact conditions for whether
one ObjCObjectPointer is an acceptable return/parameter override for another,
so we're going to disable that entire class of warning for now. The
"forward developement" warning category, -Wmethod-signatures, can receive
unrestricted feature work, and when we're happy with how it acts, we'll
turn it on by default.
This is a pretty conservative change, and nobody's totally content with it.
llvm-svn: 117524
covariant/contravariant overrides and implementations, but do so under
control of a new flag (-Wno-objc-covariant-overrides, which yes does cover
contravariance too).
*At least* the covariance cases will probably be enabled by default shortly,
but that's not totally uncontroversial.
llvm-svn: 117346
A common idiom in Objective-C is to provide a definition of a method in a subclass that returns a more-specified version of an object than the superclass. This does not violate the principle of substitutability, because you can always use the object returned by the subclass anywhere that you could use the type returned by the superclass. It was, however, generating warnings with clang, leading people to believe that semantically correct code was incorrect and requiring less accurate type specification and explicit down-casts (neither of which is a good thing to encourage).
This change ensures that any method definition has parameter and return types that make it accept anything that something conforming to the declaration may pass and return something that the caller will expect, but allows stricter definitions.
llvm-svn: 117271
declaration have the 'readwrite' attribute. This is a common case, and we can issue a more lucid diagnostic.
Fixes <rdar://problem/7629420>.
llvm-svn: 117045
don't repeatedly loop through identifiers, correcting the same typo'd
identifier over and over again.
We still bail out after 20 typo corrections, but this should help
improve performance in the common case where we're typo-correcting
because the user forgot to include a header.
llvm-svn: 116901
we did was an acceptable lookup. If it is, then we can re-use that
lookup result. If it isn't, we have to perform the lookup again. This
is almost surely the cause behind the mysterious typo.m failures on
some builders; we were getting the wrong lookup results returned.
llvm-svn: 116586
identifiers to determine good typo-correction candidates. Once we've
identified those candidates, we perform name lookup on each of them
and the consider the results.
This optimization makes typo correction > 2x faster on a benchmark
example using a single typo (NSstring) in a tiny file that includes
Cocoa.h from a precompiled header, since we are deserializing far less
information now during typo correction.
There is a semantic change here, which is interesting. The presence of
a similarly-named entity that is not visible can now affect typo
correction. This is both good (you won't get weird corrections if the
thing you wanted isn't in scope) and bad (you won't get good
corrections if there is a similarly-named-but-completely-unrelated
thing). Time will tell whether it was a good choice or not.
llvm-svn: 116528
properties.
1. Generates the AST for lexical info. of accessing
getter/setter methods using dot-syntax notation.
This fixes //rdar: //8528170.
2. Modifes rewriter to handle the AST putout in 1.
3. Supportes in rewriter ObjCImplicitSetterGetter ASTs.
llvm-svn: 116237
one declared in class's extension and not one declared
in class's superclass. This supresses a bogus warning on
method type mismatch.
Fixes //rdar: // 8530080
llvm-svn: 116118