This reverts commits r268969, r268979 and r268984. They had target specific test
in generic directories without the correct specifiers and made it hard for us to
come up with a good solution by rapidly committing untested changes.
This test needs to be in a target specific directory or have the correct REQUIRED
identifier.
llvm-svn: 269027
IR instrumentation generates a COMDAT symbol __llvm_profile_raw_version to
overwrite the same symbol in profile run-time to distinguish IR profiles from
Clang generated profiles. In MACHO, LinkOnceODR linkage is used due to the
lack of COMDAT support.
But LinkOnceODR linkage might have .weak_def_can_be_hidden assembly directive,
while the weak variable in run-time has a .weak_definition directive. Linker
will not merge these two symbols even they have the same name. The end result
is IR profiles are not properly flagged in MACHO.
This patch changes the linkage for __llvm_profile_raw_version in each module to
LinkOnceAny so that it has same .weak_definition directive as in the run-time.
Differential Revision: http://reviews.llvm.org/D20078
llvm-svn: 268969
This fixes http://llvm.org/PR27646 on AArch64.
There are three issues here:
- The GR save area is 7 words in size, instead of 8. This is not enough
if none of the fixed arguments is passed in GRs (they're all floats or
aggregates).
- The first argument is ignored (which counteracts the above if it's passed
in GR).
- Like x86_64, fixed arguments landing in the overflow area are wrongly
counted towards the overflow offset.
Differential Revision: http://reviews.llvm.org/D20023
llvm-svn: 268967
Allowing overriding the default ASAN shadow mapping offset with the
-asan-shadow-offset option, and allow zero to be specified for both offset and
scale.
Patch by Aaron Carroll <aaronc@apple.com>.
llvm-svn: 268724
Allowing overriding the default ASAN shadow mapping offset with the
-asan-shadow-offset option, and allow zero to be specified for both offset and
scale.
llvm-svn: 268586
Be more specific in describing compression failures. Also, check for
this kind of error in emitNameData().
This is part of a series of patches to transition ProfileData over to
the stricter Error/Expected interface.
llvm-svn: 268400
SystemZ on Linux currently has 53-bit address space. In theory, the hardware
could support a full 64-bit address space, but that's not supported due to
kernel limitations (it'd require 5-level page tables), and there are no plans
for that. The default process layout stays within first 4TB of address space
(to avoid creating 4-level page tables), so any offset >= (1 << 42) is fine.
Let's use 1 << 52 here, ie. exactly half the address space.
I've originally used 7 << 50 (uses top 1/8th of the address space), but ASan
runtime assumes there's some space after the shadow area. While this is
fixable, it's simpler to avoid the issue entirely.
Also, I've originally wanted to have the shadow aligned to 1/8th the address
space, so that we can use OR like X86 to assemble the offset. I no longer
think it's a good idea, since using ADD enables us to load the constant just
once and use it with register + register indexed addressing.
Differential Revision: http://reviews.llvm.org/D19650
llvm-svn: 268161
This patch implements the transformation that promotes indirect calls to
conditional direct calls when the indirect-call value profile meta-data is
available.
Differential Revision: http://reviews.llvm.org/D17864
llvm-svn: 267815
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch changes the interface for createPGOFuncNameMetadata() where we add
another PGOFuncName argument.
Differential Revision: http://reviews.llvm.org/D19433
llvm-svn: 267216
Summary:
Adds an instrumentation pass for the new EfficiencySanitizer ("esan")
performance tuning family of tools. Multiple tools will be supported
within the same framework. Preliminary support for a cache fragmentation
tool is included here.
The shared instrumentation includes:
+ Turn mem{set,cpy,move} instrinsics into library calls.
+ Slowpath instrumentation of loads and stores via callouts to
the runtime library.
+ Fastpath instrumentation will be per-tool.
+ Which memory accesses to ignore will be per-tool.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, vkalintiris, pcc, silvas, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19167
llvm-svn: 267058
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Summary:
This is done for consistency with asan-use-after-return.
I see no other users than tests.
Reviewers: aizatsky, kcc
Differential Revision: http://reviews.llvm.org/D19306
llvm-svn: 266906
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Direct callees' that are cast to other function prototypes,
show up in the Call/Invoke instructions as ConstantExpr's.
Currently llvm::CallSite's getCalledFunction() fails
to return the callees in such expressions as direct calls.
Value profiling should avoid instrumenting such cases. Mostly NFC.
llvm-svn: 265330
Use a helper function to find all the direct-calls-sites in a function.
Also split the code into a separated file as this will be use by
indirect-call-promotion transformation.
Differential Revision: http://reviews.llvm.org/D18704
llvm-svn: 265199
Refactor the code that gets and creates PGOFuncName meta data so that it can be
used in clang's value profile annotation.
Differential Revision: http://reviews.llvm.org/D18623
llvm-svn: 265149
PGOFuncNames are used as the key to retrieve the Function definition from the
MD5 stored in the profile. For internal linkage function, we prefix the source
file name to the PGOFuncNames. LTO's internalization privatizes many global linkage
symbols. This happens after value profile annotation, but those internal
linkage functions should not have a source prefix. To differentiate compiler
generated internal symbols from original ones, PGOFuncName meta data are
created and attached to the original internal symbols in the value profile
annotation step. If a symbol does not have the meta data, its original linkage
must be non-internal.
Also add a new map that maps PGOFuncName's MD5 value to the function definition.
Differential Revision: http://reviews.llvm.org/D17895
llvm-svn: 264902
We have known races on profile counters, which can be reproduced by enabling
-fsanitize=thread and -fprofile-instr-generate simultaneously on a
multi-threaded program. This patch avoids reporting those races by not
instrumenting the reads and writes coming from the instruction profiler.
llvm-svn: 264805
On OS X El Capitan and iOS 9, the linker supports a new section
attribute, live_support, which allows dead stripping to remove dead
globals along with the ASAN metadata about them.
With this change __asan_global structures are emitted in a new
__DATA,__asan_globals section on Darwin.
Additionally, there is a __DATA,__asan_liveness section with the
live_support attribute. Each entry in this section is simply a tuple
that binds together the liveness of a global variable and its ASAN
metadata structure. Thus the metadata structure will be alive if and
only if the global it references is also alive.
Review: http://reviews.llvm.org/D16737
llvm-svn: 264645
Don't set the function hotness attribute on the fly. This changes the CFG
branch probability of the caller function, which leads to inconsistent BB
ordering. This patch moves the attribute setting to a separated loop after
the counts in all functions are populated.
Fixes PR27024 - PGO instrumentation profile data is not reflected in correct
basic blocks.
Differential Revision: http://reviews.llvm.org/D18491
llvm-svn: 264594
Summary:
Without tree pruning clang has 2,667,552 points.
Wiht only dominators pruning: 1,515,586.
With both dominators & predominators pruning: 1,340,534.
Resubmit of r262103.
Differential Revision: http://reviews.llvm.org/D18341
llvm-svn: 264003
Summary:
These dependencies would be used in the future to reduce the number
of instrumented blocks(http://reviews.llvm.org/rL262103)
This is submitted as a separate CL because of previous problems with
ARM.
Subscribers: aemerson
Differential Revision: http://reviews.llvm.org/D18227
llvm-svn: 263797
There is something strange going on with debug info (.eh_frame_hdr)
disappearing when msan.module_ctor are placed in comdat sections.
Moving this functionality under flag, disabled by default.
llvm-svn: 263579
commit ae14bf6488e8441f0f6d74f00455555f6f3943ac
Author: Mehdi Amini <mehdi.amini@apple.com>
Date: Fri Mar 11 17:15:50 2016 +0000
Remove PreserveNames template parameter from IRBuilder
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263258
91177308-0d34-0410-b5e6-96231b3b80d8
until we can figure out what to do about clang and Release build testing.
This reverts commit 263258.
llvm-svn: 263321
Value profile instrumentation treats inline asm calls like they are
indirect calls. This causes problems when the 'Callee' is passed to a
ptrtoint cast -- the verifier rightly claims that this is bogus and
crashes opt.
llvm-svn: 263278
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263258
llvm::getDISubprogram walks the instructions in a function, looking for one in the scope of the current function, so that it can find the !dbg entry for the subprogram itself.
Now that !dbg is attached to functions, this should not be necessary. This patch changes all uses to just query the subprogram directly on the function.
Ideally this should be NFC, but in reality its possible that a function:
has no !dbg (in which case there's likely a bug somewhere in an opt pass), or
that none of the instructions had a scope referencing the function, so we used to not find the !dbg on the function but now we will
Reviewed by Duncan Exon Smith.
Differential Revision: http://reviews.llvm.org/D18074
llvm-svn: 263184
TSan instrumentation functions for atomic stores, loads, and cmpxchg work on
integer value types. This patch adds casts before calling TSan instrumentation
functions in cases where the value is a pointer.
Differential Revision: http://reviews.llvm.org/D17833
llvm-svn: 262876
This code has been successfully used to bootstrap libc++ in a no-asserts
mode for a very long time, so the code that follows cannot be completely
incorrect. I've added a test that shows the current behavior for this
kind of code with DFSan. If it is desirable for DFSan to do something
special when processing an invoke of a variadic function, it can be
added, but we shouldn't keep an assert that we've been ignoring due to
release builds anyways.
llvm-svn: 262829
Summary:
The PS4 linker seems to handle this fine.
Hi David, it seems that indeed most ELF linkers support
__{start,stop}_SECNAME, as our proprietary linker does as well.
This follows the pattern of r250679 w.r.t. the testing.
Maggie, Phillip, Paul: I've tested this with the PS4 SDK 3.5 toolchain
prerelease and it seems to work fine.
Reviewers: davidxl
Subscribers: probinson, phillip.power, MaggieYi
Differential Revision: http://reviews.llvm.org/D17672
llvm-svn: 262112
Summary:
Without tree pruning clang has 2,667,552 points.
Wiht only dominators pruning: 1,515,586.
With both dominators & predominators pruning: 1,340,534.
Differential Revision: http://reviews.llvm.org/D17671
llvm-svn: 262103
Summary:
This is the first simple attempt to reduce number of coverage-
instrumented blocks.
If a basic block dominates all its successors, then its coverage
information is useless to us. Ingore such blocks if
santizer-coverage-prune-tree option is set.
Differential Revision: http://reviews.llvm.org/D17626
llvm-svn: 261949
MSan adds a constructor to each translation unit that calls
__msan_init, and does nothing else. The idea is to run __msan_init
before any instrumented code. This results in multiple constructors
and multiple .init_array entries in the final binary, one per
translation unit. This is absolutely unnecessary; one would be
enough.
This change moves the constructors to a comdat group in order to drop
the extra ones.
llvm-svn: 260632
This patch reads the indirect-call value records in the profile and makes the
annotation in the indirect-call instruction. This is for IR level profile
instrumentation.
Differential Revision: http://reviews.llvm.org/D16935
llvm-svn: 260400
This patch uses one bit in profile version to differentiate Clang
instrumentation and IR level instrumentation profiles.
PGOInstrumenation generates a COMDAT variable __llvm_profile_raw_version so
that the compiler runtime can set the right profile kind.
For Maco-O platform, we generate the variable as linkonce_odr linkage as
COMDAT is not supported.
PGOInstrumenation now checks this bit to make sure it's an IR level
instrumentation profile.
The patch was submitted as r260164 but reverted due to a Darwin test breakage.
Original Differential Revision: http://reviews.llvm.org/D15540
Differential Revision: http://reviews.llvm.org/D17020
llvm-svn: 260385
This patch uses one bit in profile version to differentiate Clang
instrumentation and IR level instrumentation profiles.
PGOInstrumenation generates a COMDAT variable __llvm_profile_raw_version so
that the compiler runtime can set the right profile kind.
PGOInstrumenation now checks this bit to make sure it's an IR level
instrumentation profile.
Differential Revision: http://reviews.llvm.org/D15540
llvm-svn: 260146
This reduces sizes of instrumented object files, final binaries,
process images, and raw profile data.
The format of the indexed profile data remain the same.
Differential Revision: http://reviews.llvm.org/D16388
llvm-svn: 260117
As discussed in https://github.com/google/sanitizers/issues/398, with current
implementation of poisoning globals we can have some CHECK failures or false
positives in case of mixing instrumented and non-instrumented code due to ASan
poisons innocent globals from non-sanitized binary/library. We can use private
aliases to avoid such errors. In addition, to preserve ODR violation detection,
we introduce new __odr_asan_gen_XXX symbol for each instrumented global that
indicates if this global was already registered. To detect ODR violation in
runtime, we should only check the value of indicator and report an error if it
isn't equal to zero.
Differential Revision: http://reviews.llvm.org/D15642
llvm-svn: 260075
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
This patch adds the instrumentation for indirect call value profiling. It finds all the indirect call-sites and generates instrprof_value_profile intrinsic calls. A new opt level option -disable-vp is introduced to disable this instrumentation.
Reviewers: davidxl, betulb, vsk
Differential Revision: http://reviews.llvm.org/D16016
llvm-svn: 258417
Do not emit profile arc files and note files for module and skeleton
CU's.
Our users report seeing unexpected *.gcda and *.gcno files in their
projects when using gcov-style profiling with modules or frameworks.
The unwanted files come from these modules. This is not very helpful
for end-users. Further, we've seen reports of instrumented programs
crashing while writing these files out (due to I/O failures).
rdar://problem/22838296
Reviewed-by: aprantl
Differential Revision: http://reviews.llvm.org/D15997
llvm-svn: 258406
This patch creates the profile data variable before lowering the profile intrinsics.
Reviewers: davidxl, silvas
Differential Revision: http://reviews.llvm.org/D16015
llvm-svn: 258156
This patch fixes the memory sanitizer origin store instrumentation for
array types. This can be triggered by cases where frontend lowers
function return to array type instead of aggregation.
For instance, the C code:
--
struct mypair {
int64_t x;
int y;
};
mypair my_make_pair(int64_t x, int y) {
mypair p;
p.x = x;
p.y = y;
return p;
}
int foo (int p)
{
mypair z = my_make_pair(p, 0);
return z.y + z.x;
}
--
It will be lowered with target set to aarch64-linux and -O0 to:
--
[...]
define i32 @_Z3fooi(i32 %p) #0 {
[...]
%call = call [2 x i64] @_Z12my_make_pairxi(i64 %conv, i32 0)
%1 = bitcast %struct.mypair* %z to [2 x i64]*
store [2 x i64] %call, [2 x i64]* %1, align 8
[...]
--
The origin store will emit a 'icmp' to test each store value again the
TLS origin array. However since 'icmp' does not support ArrayType the
memory instrumentation phase will bail out with an error.
This patch change it by using the same strategy used for struct type on
array.
It fixes the 'test/msan/insertvalue_origin.cc' for aarch64 (the -O0 case).
llvm-svn: 257375
Coverage mapping data may reference names of functions
that are skipped by FE (e.g, unused inline functions). Since
those functions are skipped, normal instr-prof function lowering
pass won't put those names in the right section, so special
handling is needed to walk through coverage mapping structure
and recollect the references.
With this patch, only names that are skipped are processed. This
simplifies the lowering code and it no longer needs to make
assumptions coverage mapping data layout. It should also be
more efficient.
llvm-svn: 257091
This is one last remaining instrumentatation related structure
that needs to be migrate to use the centralized template
definition. With this change, instrumentation code
related to coverage module header will be kept in sync
with the coverage mapping reader. The remaining code
which makes implicit assumption about covmap control
structure layout in the the lowering pass will cleaned
up in a different patch. This patch is not intended to
have no functional change.
llvm-svn: 256715
This patch adds an option, -safe-stack-no-tls, for using normal
storage instead of thread-local storage for the unsafe stack pointer.
This can be useful when SafeStack is applied to an operating system
kernel.
http://reviews.llvm.org/D15673
Patch by Michael LeMay.
llvm-svn: 256221
The linker requires that a comdat section must be associated
with a another comdat section that precedes it. This
means the comdat section's name needs to use the profile name
var's name.
Patch tested by Johan Engelen.
llvm-svn: 256220
When targeting COFF, it is required that a comdat section to
have a global obj with the same name as the comdat (except for
comdats with select kind to be associative). This fix makes
sure that the comdat is keyed on the data variable for COFF.
Also improved test coverage for this.
llvm-svn: 256193
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
This patch add support for variadic argument for AArch64. All the MSAN
unit tests are not passing as well the signal_stress_test (currently
set as XFAIl for aarch64).
llvm-svn: 255495
Before the patch, -fprofile-instr-generate compile will fail
if no integrated-as is specified when the file contains
any static functions (the -S output is also invalid).
This is the second try. The fix in this patch is very localized.
Only profile symbol names of profile symbols with internal
linkage are fixed up while initializer of name syms are not
changes. This means there is no format change nor version bump.
llvm-svn: 255434
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
This new patch fixes a few bugs that exposed in last submit. It also improves
the test cases.
--Original Commit Message--
This patch implements a minimum spanning tree (MST) based instrumentation for
PGO. The use of MST guarantees minimum number of CFG edges getting
instrumented. An addition optimization is to instrument the less executed
edges to further reduce the instrumentation overhead. The patch contains both the
instrumentation and the use of the profile to set the branch weights.
Differential Revision: http://reviews.llvm.org/D12781
llvm-svn: 255132
Summary: If the same pass manager is used for multiple modules ASAN
complains about GlobalsMD being initialized twice. Fix this by
resetting GlobalsMD in a new doFinalization method to allow this
use case.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14962
llvm-svn: 254851
For PowerPC64 we cannot just pass SP extracted from @llvm.stackrestore to
_asan_allocas_unpoison due to specific ABI requirements
(http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK).
This patch adds the value returned by @llvm.get.dynamic.area.offset to
extracted from @llvm.stackrestore stack pointer, so dynamic allocas unpoisoning
stuff would work correctly on PowerPC64.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D15108
llvm-svn: 254707
The current code does not take alloca array size into account and,
as a result, considers any access past the first array element to be
unsafe.
llvm-svn: 254350
This patch changes the DFSan instrumentation for aarch64 to instead
of using fixes application mask defined by SANITIZER_AARCH64_VMA
to read the application shadow mask value from compiler-rt. The value
is initialized based on runtime VAM detection.
Along with this patch a compiler-rt one will also be added to export
the shadow mask variable.
llvm-svn: 254196
This patch implements a minimum spanning tree (MST) based instrumentation for
PGO. The use of MST guarantees minimum number of CFG edges getting
instrumented. An addition optimization is to instrument the less executed
edges to further reduce the instrumentation overhead. The patch contains both the
instrumentation and the use of the profile to set the branch weights.
Differential Revision: http://reviews.llvm.org/D12781
llvm-svn: 254021
In profile runtime implementation for Darwin, Linux and FreeBSD, the
names of sections holding profile control/counter/naming data need
to be known by the runtime in order to locate the start/end of the
data. Moving the name definitions to the common file to specify the
connection.
llvm-svn: 253814
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
This change introduces an instrumentation intrinsic instruction for
value profiling purposes, the lowering of the instrumentation intrinsic
and raw reader updates. The raw profile data files for llvm-profdata
testing are updated.
llvm-svn: 253484
Use ScalarEvolution to calculate memory access bounds.
Handle function calls based on readnone/nocapture attributes.
Handle memory intrinsics with constant size.
This change improves both recall and precision of IsAllocaSafe.
See the new tests (ex. BitCastWide) for the kind of code that was wrongly
classified as safe.
SCEV efficiency seems to be limited by the fact the SafeStack runs late
(in CodeGenPrepare), and many loops are unrolled or otherwise not in LCSSA.
llvm-svn: 253083
This patch makes ASAN for aarch64 use the same shadow offset for all
currently supported VMAs (39 and 42 bits). The shadow offset is the
same for 39-bit (36). Similar to ppc64 port, aarch64 transformation
also requires to use an add instead of 'or' for 42-bit VMA.
llvm-svn: 252495
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
inalloca variables were not treated as static allocas, therefore didn't
participate in regular stack instrumentation. We don't want them to
participate in dynamic alloca instrumentation as well.
llvm-svn: 252213
With this change, instrumentation code and reader/write
code related to profile data structs are kept strictly
in-sync. THis will be extended to cfe and compile-rt
references as well.
Differential Revision: http://reviews.llvm.org/D13843
llvm-svn: 252113
This patch unify the 39-bit and 42-bit mapping for aarch64 to use only
one instrumentation algorithm. This removes compiler flag
SANITIZER_AARCH64_VMA requirement for MSAN on aarch64.
The mapping to use now is for 39 and 42-bits:
0x00000000000ULL-0x01000000000ULL MappingDesc::INVALID
0x01000000000ULL-0x02000000000ULL MappingDesc::SHADOW
0x02000000000ULL-0x03000000000ULL MappingDesc::ORIGIN
0x03000000000ULL-0x04000000000ULL MappingDesc::SHADOW
0x04000000000ULL-0x05000000000ULL MappingDesc::ORIGIN
0x05000000000ULL-0x06000000000ULL MappingDesc::APP
0x06000000000ULL-0x07000000000ULL MappingDesc::INVALID
0x07000000000ULL-0x08000000000ULL MappingDesc::APP
And only for 42-bits:
0x08000000000ULL-0x09000000000ULL MappingDesc::INVALID
0x09000000000ULL-0x0A000000000ULL MappingDesc::SHADOW
0x0A000000000ULL-0x0B000000000ULL MappingDesc::ORIGIN
0x0B000000000ULL-0x0F000000000ULL MappingDesc::INVALID
0x0F000000000ULL-0x10000000000ULL MappingDesc::APP
0x10000000000ULL-0x11000000000ULL MappingDesc::INVALID
0x11000000000ULL-0x12000000000ULL MappingDesc::APP
0x12000000000ULL-0x17000000000ULL MappingDesc::INVALID
0x17000000000ULL-0x18000000000ULL MappingDesc::SHADOW
0x18000000000ULL-0x19000000000ULL MappingDesc::ORIGIN
0x19000000000ULL-0x20000000000ULL MappingDesc::INVALID
0x20000000000ULL-0x21000000000ULL MappingDesc::APP
0x21000000000ULL-0x26000000000ULL MappingDesc::INVALID
0x26000000000ULL-0x27000000000ULL MappingDesc::SHADOW
0x27000000000ULL-0x28000000000ULL MappingDesc::ORIGIN
0x28000000000ULL-0x29000000000ULL MappingDesc::SHADOW
0x29000000000ULL-0x2A000000000ULL MappingDesc::ORIGIN
0x2A000000000ULL-0x2B000000000ULL MappingDesc::APP
0x2B000000000ULL-0x2C000000000ULL MappingDesc::INVALID
0x2C000000000ULL-0x2D000000000ULL MappingDesc::SHADOW
0x2D000000000ULL-0x2E000000000ULL MappingDesc::ORIGIN
0x2E000000000ULL-0x2F000000000ULL MappingDesc::APP
0x2F000000000ULL-0x39000000000ULL MappingDesc::INVALID
0x39000000000ULL-0x3A000000000ULL MappingDesc::SHADOW
0x3A000000000ULL-0x3B000000000ULL MappingDesc::ORIGIN
0x3B000000000ULL-0x3C000000000ULL MappingDesc::APP
0x3C000000000ULL-0x3D000000000ULL MappingDesc::INVALID
0x3D000000000ULL-0x3E000000000ULL MappingDesc::SHADOW
0x3E000000000ULL-0x3F000000000ULL MappingDesc::ORIGIN
0x3F000000000ULL-0x40000000000ULL MappingDesc::APP
And although complex it provides a better memory utilization that
previous one.
llvm-svn: 251624
Clang driver now injects -u<hook_var> flag in the linker
command line, in which case user function is not needed
any more.
Differential Revision: http://reviews.llvm.org/D14033
llvm-svn: 251612
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.
llvm-svn: 251324
This patch converts the remaining references to literal
strings for names of profile runtime entites (such as
profile runtime hook, runtime hook use function, profile
init method, register function etc).
Also added documentation for all the new interfaces.
llvm-svn: 251093
This is a clean up patch that defines instr prof section and variable
name prefixes in a common header with access helper functions.
clang FE change will be done as a follow up once this patch is in.
Differential Revision: http://reviews.llvm.org/D13919
llvm-svn: 251058
* Don't instrument promotable dynamic allocas:
We already have a test that checks that promotable dynamic allocas are
ignored, as well as static promotable allocas. Make sure this test will
still pass if/when we enable dynamic alloca instrumentation by default.
* Handle lifetime intrinsics before handling dynamic allocas:
lifetime intrinsics may refer to dynamic allocas, so we need to emit
instrumentation before these dynamic allocas would be replaced.
Differential Revision: http://reviews.llvm.org/D12704
llvm-svn: 251045
It is now possible to infer intrinsic modref behaviour purely from intrinsic attributes.
This change will allow to completely remove GET_INTRINSIC_MODREF_BEHAVIOR table.
Differential Revision: http://reviews.llvm.org/D13907
llvm-svn: 250860
Summary: In r231241, TargetLibraryInfoWrapperPass was added to
`getAnalysisUsage` for `AddressSanitizer`, but the corresponding
`INITIALIZE_PASS_DEPENDENCY` was not added.
Reviewers: dvyukov, chandlerc, kcc
Subscribers: kcc, llvm-commits
Differential Revision: http://reviews.llvm.org/D13629
llvm-svn: 250813
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
llvm-svn: 250456
On Linux, the profile runtime can use __start_SECTNAME and __stop_SECTNAME
symbols defined by the linker to locate the start and end location of
a named section (with C name). This eliminates the need for instrumented
binary to call __llvm_profile_register_function during start-up time.
llvm-svn: 250199
This is an implementation of
https://github.com/google/sanitizers/issues/579
It has a number of advantages over the current mapping:
* Works for non-PIE executables.
* Does not require ASLR; as a consequence, debugging MSan programs in
gdb no longer requires "set disable-randomization off".
* Supports linux kernels >=4.1.2.
* The code is marginally faster and smaller.
This is an ABI break. We never really promised ABI stability, but
this patch includes a courtesy escape hatch: a compile-time macro
that reverts back to the old mapping layout.
llvm-svn: 249753
In -fprofile-instr-generate compilation, to remove the redundant profile
variables for the COMDAT functions, these variables are placed in the same
COMDAT group as its associated function. This way when the COMDAT function
is not picked by the linker, those profile variables will also not be
output in the final binary. This may cause warning when mix link objects
built w and wo -fprofile-instr-generate.
This patch puts the profile variables for COMDAT functions to its own COMDAT
group to avoid the problem.
Patch by xur.
Differential Revision: http://reviews.llvm.org/D12248
llvm-svn: 248440
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
This patch adds support for msan on aarch64-linux for both 39 and
42-bit VMA. The support is enabled by defining the
SANITIZER_AARCH64_VMA compiler flag to either 39 or 42 at build time
for both clang/llvm and compiler-rt. The default VMA is 39 bits.
llvm-svn: 247807
These sections contain pointers to function that should be invoked
during startup/shutdown by __libc_csu_init and __libc_csu_fini.
Instrumenting these globals will append redzone to them, which will be
filled with zeroes. This will cause null pointer dereference at runtime.
Merge ASan regression tests for globals that should be ignored by
instrumentation pass.
llvm-svn: 247734
Except the changes that defined virtual destructors as =default, because that
ran into problems with GCC 4.7 and overriding methods that weren't noexcept.
llvm-svn: 247298
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
Summary:
Add a `cleanupendpad` instruction, used to mark exceptional exits out of
cleanups (for languages/targets that can abort a cleanup with another
exception). The `cleanupendpad` instruction is similar to the `catchendpad`
instruction in that it is an EH pad which is the target of unwind edges in
the handler and which itself has an unwind edge to the next EH action.
The `cleanupendpad` instruction, similar to `cleanupret` has a `cleanuppad`
argument indicating which cleanup it exits. The unwind successors of a
`cleanuppad`'s `cleanupendpad`s must agree with each other and with its
`cleanupret`s.
Update WinEHPrepare (and docs/tests) to accomodate `cleanupendpad`.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12433
llvm-svn: 246751
Summary:
This change makes the variable argument intrinsics, `llvm.va_start` and
`llvm.va_copy`, and the `va_arg` instruction behave as they do on Windows
inside a `CallingConv::X86_64_Win64` function. It's needed for a Clang patch
I have to add support for GCC's `__builtin_ms_va_list` constructs.
Reviewers: nadav, asl, eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1622
llvm-svn: 245990
Extend signed relational comparison instrumentation with a special
case for comparisons with -1. This fixes an MSan false positive when
such comparison is used as a sign bit test.
https://llvm.org/bugs/show_bug.cgi?id=24561
llvm-svn: 245980
This patch adds support for dfsan on aarch64-linux with 42-bit VMA
(current default config for 64K pagesize kernels). The support is
enabled by defining the SANITIZER_AARCH64_VMA to 42 at build time
for both clang/llvm and compiler-rt. The default VMA is 39 bits.
llvm-svn: 245840
Summary:
WinEHPrepare is going to require that cleanuppad and catchpad produce values
of token type which are consumed by any cleanupret or catchret exiting the
pad. This change updates the signatures of those operators to require/enforce
that the type produced by the pads is token type and that the rets have an
appropriate argument.
The catchpad argument of a `CatchReturnInst` must be a `CatchPadInst` (and
similarly for `CleanupReturnInst`/`CleanupPadInst`). To accommodate that
restriction, this change adds a notion of an operator constraint to both
LLParser and BitcodeReader, allowing appropriate sentinels to be constructed
for forward references and appropriate error messages to be emitted for
illegal inputs.
Also add a verifier rule (noted in LangRef) that a catchpad with a catchpad
predecessor must have no other predecessors; this ensures that WinEHPrepare
will see the expected linear relationship between sibling catches on the
same try.
Lastly, remove some superfluous/vestigial casts from instruction operand
setters operating on BasicBlocks.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12108
llvm-svn: 245797
This patch adds support for asan on aarch64-linux with 42-bit VMA
(current default config for 64K pagesize kernels). The support is
enabled by defining the SANITIZER_AARCH64_VMA to 42 at build time
for both clang/llvm and compiler-rt. The default VMA is 39 bits.
llvm-svn: 245594
ByteSize and BitSize should not be size_t but unsigned, considering
1) They are at most 2^16 and 2^19, respectively.
2) BitSize is an argument to Type::getIntNTy which takes unsigned.
Also, use the correct utostr instead itostr and cache the string result.
Thanks to James Touton for reporting this!
llvm-svn: 245167
Summary: Similar to the change we applied to ASan. The same test case works.
Reviewers: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11961
llvm-svn: 245067
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Summary:
returns_twice (most importantly, setjmp) functions are
optimization-hostile: if local variable is promoted to register, and is
changed between setjmp() and longjmp() calls, this update will be
undone. This is the reason why "man setjmp" advises to mark all these
locals as "volatile".
This can not be enough for ASan, though: when it replaces static alloca
with dynamic one, optionally called if UAR mode is enabled, it adds a
whole lot of SSA values, and computations of local variable addresses,
that can involve virtual registers, and cause unexpected behavior, when
these registers are restored from buffer saved in setjmp.
To fix this, just disable dynamic alloca and UAR tricks whenever we see
a returns_twice call in the function.
Reviewers: rnk
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D11495
llvm-svn: 243561
ASan shadow on Android starts at address 0 for both historic and
performance reasons. This is possible because the platform mandates
-pie, which makes lower memory region always available.
This is not such a good idea on 64-bit platforms because of MAP_32BIT
incompatibility.
This patch changes Android/AArch64 mapping to be the same as that of
Linux/AAarch64.
llvm-svn: 243548
We currently version `__asan_init` and when the ABI version doesn't match, the linker gives a `undefined reference to '__asan_init_v5'` message. From this, it might not be obvious that it's actually a version mismatch error. This patch makes the error message much clearer by changing the name of the undefined symbol to be `__asan_version_mismatch_check_xxx` (followed by the version string). We obviously don't want the initializer to be named like that, so it's a separate symbol that is used only for the purpose of version checking.
Reviewed at http://reviews.llvm.org/D11004
llvm-svn: 243003
preparation for de-coupling the AA implementations.
In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.
I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.
I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.
Differential Revision: http://reviews.llvm.org/D10564
llvm-svn: 242963
In r242510, non-instrumented allocas are now moved into the first basic block. This patch limits that to only move allocas that are present *after* the first instrumented one (i.e. only move allocas up). A testcase was updated to show behavior in these two cases. Without the patch, an alloca could be moved down, and could cause an invalid IR.
Differential Revision: http://reviews.llvm.org/D11339
llvm-svn: 242883
Summary:
Arguments to llvm.localescape must be static allocas. They must be at
some statically known offset from the frame or stack pointer so that
other functions can access them with localrecover.
If we ever want to instrument these, we can use more indirection to
recover the addresses of these local variables. We can do it during
clang irgen or with the asan module pass.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11307
llvm-svn: 242726
Instrumentation and the runtime library were in disagreement about
ASan shadow offset on Android/AArch64.
This fixes a large number of existing tests on Android/AArch64.
llvm-svn: 242595
Since r230724 ("Skip promotable allocas to improve performance at -O0"), there is a regression in the generated debug info for those non-instrumented variables. When inspecting such a variable's value in LLDB, you often get garbage instead of the actual value. ASan instrumentation is inserted before the creation of the non-instrumented alloca. The only allocas that are considered standard stack variables are the ones declared in the first basic-block, but the initial instrumentation setup in the function breaks that invariant.
This patch makes sure uninstrumented allocas stay in the first BB.
Differential Revision: http://reviews.llvm.org/D11179
llvm-svn: 242510
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
It can be more robust than copying debug info from first non-alloca
instruction in the entry basic block. We use the same strategy in
coverage instrumentation.
llvm-svn: 240738
Do not instrument globals that are placed in sections containing "__llvm"
in their name.
This fixes a bug in ASan / PGO interoperability. ASan interferes with LLVM's
PGO, which places its globals into a special section, which is memcpy-ed by
the linker as a whole. When those goals are instrumented, ASan's memcpy wrapper
reports an issue.
http://reviews.llvm.org/D10541
llvm-svn: 240723
Summary:
This is the LLVM part of the PPC memory sanitizer implementation in
D10648.
Reviewers: kcc, samsonov, willschm, wschmidt, eugenis
Reviewed By: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10649
llvm-svn: 240627
This avoids creating an unnecessary undefined reference on targets such as
NVPTX that require such references to be declared in asm output.
llvm-svn: 240321
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
Change builtin function name and signature ( add third parameter - rounding mode ).
Added tests for intrinsics.
Differential Revision: http://reviews.llvm.org/D10473
llvm-svn: 239888
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
DebugLoc::getFnDebugLoc() should soon be removed. Also,
getDISubprogram() might become more effective soon and wouldn't need to
scan debug locations at all, if function-level metadata would be emitted
by Clang.
llvm-svn: 239586
The following code triggers a fatal error in the compiler instrumentation
of ASan on Darwin because we place the attribute into llvm.metadata section,
which does not have the proper MachO section name.
void foo() __attribute__((annotate("custom")));
void foo() {;}
This commit reorders the checks so that we skip everything in llvm.metadata
first. It also removes the hard failure in case the section name does not
parse. That check will be done lower in the compilation pipeline anyway.
(Reviewed in http://reviews.llvm.org/D9093.)
llvm-svn: 239379
This fixes a bit I forgot in r238335. In addition to the data record and
the counter, we can also move the name of the counter to the comdat for
the associated function.
I'm also adding an IR test case to check that these three elements are
placed in the proper comdat.
llvm-svn: 238351
Counter symbols created for linkonce functions are not discarded by ELF
linkers unless the symbols are placed in the same comdat section as its
associated function.
llvm-svn: 238335
We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it.
Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.
llvm-svn: 237169
Second attempt; instead of using a named local variable, passing
arguments directly to `createSanitizerCtorAndInitFunctions` worked
on Windows.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8780
llvm-svn: 236951
Summary:
This gives frontend more precise control over collected coverage
information. User can still override these options by passing
-mllvm flags.
No functionality change.
Test Plan: regression test suite.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9539
llvm-svn: 236687
This makes use of the new API which can remove attributes from a set given a builder.
This is much faster than creating a temporary set and reduces llc time by about 0.3% which was all spent creating temporary attributes sets on the context.
llvm-svn: 236668
This change is the second of 3 patches to add support for specifying
the profile output from the command line via -fprofile-instr-generate=<path>,
where the specified output path/file will be overridden by the
LLVM_PROFILE_FILE environment variable.
This patch adds the necessary support to the llvm instrumenter, specifically
a new member of GCOVOptions for clang to save the specified filename, and
support for calling the new compiler-rt interface from __llvm_profile_init.
Patch by Teresa Johnson. Thanks!
llvm-svn: 236288
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Stop using `DIDescriptor` and its subclasses in the `DebugInfoFinder`
API, as well as the rest of the API hanging around in `DebugInfo.h`.
llvm-svn: 235240
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
llvm-svn: 234290
Summary:
Instead of making a local copy of `checkInterfaceFunction` for each
sanitizer, move the function in a common place.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8775
llvm-svn: 234220
There's still lots of callers passing nullptr, of course - some because
they'll never be migrated (InstCombines for bitcasts - well they don't
make any sense when the pointer type is opaque anyway, for example) and
others that will need more engineering to pass Types around.
llvm-svn: 234126
The plan here is to push the API changes out from the common components
(like Constant::getGetElementPtr and IRBuilder::CreateGEP related
functions) and just update callers to either pass the type if it's
obvious, or pass null.
Do this with LoadInst as well and anything else that comes up, then to
start porting specific uses to not pass null anymore - this may require
some refactoring in each case.
llvm-svn: 234042