This diff includes the logic for setting the precision bits for each primary fixed point type in the target info and logic for initializing a fixed point literal.
Fixed point literals are declared using the suffixes
```
hr: short _Fract
uhr: unsigned short _Fract
r: _Fract
ur: unsigned _Fract
lr: long _Fract
ulr: unsigned long _Fract
hk: short _Accum
uhk: unsigned short _Accum
k: _Accum
uk: unsigned _Accum
```
Errors are also thrown for illegal literal values
```
unsigned short _Accum u_short_accum = 256.0uhk; // expected-error{{the integral part of this literal is too large for this unsigned _Accum type}}
```
Differential Revision: https://reviews.llvm.org/D46915
llvm-svn: 335148
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse, and therefore printed in the wrong order by
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effects, especially for
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attribute's order was changed instead.
It also causes some 'previous occurrence here' hints to be textually
after the main marker. This typically happens when attributes are
merged, but are incompatible. Interchanging the role of the the main
and note SourceLocation will also cause the case where two different
declaration's attributes (in contrast to multiple attributes of the
same declaration) are merged to be reversed. There is no easy fix
because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway, which often is on the same line.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 335084
This diff includes changes for the remaining _Fract and _Sat fixed point types.
```
signed short _Fract s_short_fract;
signed _Fract s_fract;
signed long _Fract s_long_fract;
unsigned short _Fract u_short_fract;
unsigned _Fract u_fract;
unsigned long _Fract u_long_fract;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
short _Fract short_fract;
_Fract fract;
long _Fract long_fract;
// Saturated fixed point types
_Sat signed short _Accum sat_s_short_accum;
_Sat signed _Accum sat_s_accum;
_Sat signed long _Accum sat_s_long_accum;
_Sat unsigned short _Accum sat_u_short_accum;
_Sat unsigned _Accum sat_u_accum;
_Sat unsigned long _Accum sat_u_long_accum;
_Sat signed short _Fract sat_s_short_fract;
_Sat signed _Fract sat_s_fract;
_Sat signed long _Fract sat_s_long_fract;
_Sat unsigned short _Fract sat_u_short_fract;
_Sat unsigned _Fract sat_u_fract;
_Sat unsigned long _Fract sat_u_long_fract;
// Aliased saturated fixed point types
_Sat short _Accum sat_short_accum;
_Sat _Accum sat_accum;
_Sat long _Accum sat_long_accum;
_Sat short _Fract sat_short_fract;
_Sat _Fract sat_fract;
_Sat long _Fract sat_long_fract;
```
This diff only allows for declaration of these fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches.
Differential Revision: https://reviews.llvm.org/D46911
llvm-svn: 334718
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent _Fract types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Fixed the test that was failing by not checking for dso_local on some
targets.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333923
```
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
```
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent `_Fract` types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333814
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
llvm-svn: 331428
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
llvm-svn: 331244
We still support the old mangling if we're trying to be ABI-compatible with
Clang 6.0, though.
Differential revision: https://reviews.llvm.org/D45451
llvm-svn: 331098
This reverts r328795 which introduced an issue with referencing __global__
function templates. More details in the original review D44747.
llvm-svn: 329099
This patch sets target specific calling convention for CUDA kernels in IR.
Patch by Greg Rodgers.
Revised and lit test added by Yaxun Liu.
Differential Revision: https://reviews.llvm.org/D44747
llvm-svn: 328795
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
llvm-svn: 328636
We already have a mangling for the __unaligned qualifier, we just have
to call Qualifiers::getFromCVRUMask instead of getFromCVRMask.
PR36638
llvm-svn: 326971
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
Currently Clang uses default address space (0) to represent private address space for OpenCL
in AST. There are two issues with this:
Multiple address spaces including private address space cannot be diagnosed.
There is no mangling for default address space. For example, if private int* is emitted as
i32 addrspace(5)* in IR. It is supposed to be mangled as PUAS5i but it is mangled as
Pi instead.
This patch attempts to represent OpenCL private address space explicitly in AST. It adds
a new enum LangAS::opencl_private and adds it to the variable types which are implicitly
private:
automatic variables without address space qualifier
function parameter
pointee type without address space qualifier (OpenCL 1.2 and below)
Differential Revision: https://reviews.llvm.org/D35082
llvm-svn: 315668
This patch relates to: https://reviews.llvm.org/D33666 This adds support
for template parameters to be passed to the address_space attribute.
The main goal is to add further flexibility to the attribute and allow
for it to be used easily with templates.
The main additions are a new type (DependentAddressSpaceType) alongside
its TypeLoc and its mangling. As well as the logic required to support
dependent address spaces which mainly resides in TreeTransform.h and
SemaType.cpp.
llvm-svn: 314649
This doesn't affect our code generation in any material way -- we already give
such declarations internal linkage from a codegen perspective -- but it has
some subtle effects on code validity.
We suppress the 'L' (internal linkage) marker for mangled names in anonymous
namespaces, because it is redundant (the information is already carried by the
namespace); this deviates from GCC's behavior if a variable or function in an
anonymous namespace is redundantly declared 'static' (where GCC does include
the 'L'), but GCC's behavior is incoherent because such a declaration can be
validly declared with or without the 'static'.
We still deviate from the standard in one regard here: extern "C" declarations
in anonymous namespaces are still granted external linkage. Changing those does
not appear to have been an intentional consequence of the standard change in
DR1113.
llvm-svn: 314037
This implements the proposed approach in https://github.com/itanium-cxx-abi/cxx-abi/issues/33
This reinstates r313827, reverted in r313856, with a fix for the 'out-of-bounds
enumeration value' ubsan error in that change.
llvm-svn: 313955
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
This recommits r313722, which was reverted in r313725 because clang
couldn't build compiler-rt. It failed to build because there were
function declarations that were missing 'noescape'. That has been fixed
in r313929.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313945
This reverts commit r313722.
It looks like compiler-rt/lib/tsan/rtl/tsan_libdispatch_mac.cc cannot be
compiled because some of the functions declared in the file do not match
the ones in the SDK headers (which are annotated with 'noescape').
llvm-svn: 313725
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313722
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32520
llvm-svn: 313720
This is a recommit of r312781; in some build configurations
variable names are omitted, so changed the new regression
test accordingly.
llvm-svn: 312794
This adds _Float16 as a source language type, which is a 16-bit floating point
type defined in C11 extension ISO/IEC TS 18661-3.
In follow up patches documentation and more tests will be added.
Differential Revision: https://reviews.llvm.org/D33719
llvm-svn: 312781
This follows the scheme agreed with Nathan Sidwell, which can be found here:
https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
This will be proposed to the itanium-cxx-abi list once we have some experience
with how well it works; the ABI for this TS should be considered unstable until
it is part of the Itanium C++ ABI.
llvm-svn: 312467
Move builtins from the x86 specific scope into the global
scope. Their use is still limited to x86_64 and aarch64 though.
This allows wine on aarch64 to properly handle variadic functions.
Differential Revision: https://reviews.llvm.org/D34475
llvm-svn: 308218
__unaligned is not currently mangled in any way in the Itanium ABI. This causes
failures when using -fms-extensions and C++ in targets using Itanium ABI.
As suggested by @rsmith the simplest thing to do here is actually mangle the
qualifier as a vendor extension.
This patch also removes the change done in D31976 and updates its test to the
new reality.
This fixes
https://bugs.llvm.org/show_bug.cgi?id=33080https://bugs.llvm.org/show_bug.cgi?id=33178
Differential Revision: https://reviews.llvm.org/D33398
llvm-svn: 304523
Under -fms-extensions __unaligned is a type-qualifier that can be applied to a
non-static member function declaration.
This causes an assertion when mangling the name under Itanium, where that
qualifier is not mangled.
This patch justs makes the minimal change to avoid the crash and avoid mangling
__unaligned, as it currently happens with non-member functions.
Differential Revision: https://reviews.llvm.org/D31976
llvm-svn: 300686
Turns out integerPartWidth only explicitly defines the width of the tc functions in the APInt class. Functions that aren't used by APInt implementation itself. Many places in the code base already assume APInt is made up of 64-bit pieces. Explicitly assuming 64-bit here doesn't make that situation much worse. A full audit would need to be done if it ever changes.
llvm-svn: 299058
1. Reimplemented conditional operator so that it checks
compatibility of unqualified pointees of the 2nd and
the 3rd operands (C99, OpenCL v2.0 6.5.15).
Define QualTypes compatibility for OpenCL as following:
- corresponding types are compatible (C99 6.7.3)
- CVR-qualifiers are equal (C99 6.7.3)
- address spaces are equal (implementation defined)
2. Added generic address space to Itanium mangling.
Review: D30037
Patch by Dmitry Borisenkov!
llvm-svn: 297468
Summary:
The changes contained in this patch are:
1. Defines a new AST node `CoawaitDependentExpr` for representing co_await expressions while the promise type is still dependent.
2. Correctly detect and transform the 'co_await' operand to `p.await_transform(<expr>)` when possible.
3. Change the initial/final suspend points to build during the initial parse, so they have the correct operator co_await lookup results.
4. Fix transformation of the CoroutineBodyStmt so that it doesn't re-build the final/initial suspends.
@rsmith: This change is a little big, but it's not trivial for me to split it up. Please let me know if you would prefer this submitted as multiple patches.
Reviewers: rsmith, GorNishanov
Reviewed By: rsmith
Subscribers: ABataev, rsmith, mehdi_amini, cfe-commits
Differential Revision: https://reviews.llvm.org/D26057
llvm-svn: 297093
Removed ndrange_t as Clang builtin type and added
as a struct type in the OpenCL header.
Use type name to do the Sema checking in enqueue_kernel
and modify IR generation accordingly.
Review: D28058
Patch by Dmitry Borisenkov!
llvm-svn: 295311
We model deduction-guides as functions with a new kind of name that identifies
the template whose deduction they guide; the bulk of this patch is adding the
new name kind. This gives us a clean way to attach an extensible list of guides
to a class template in a way that doesn't require any special handling in AST
files etc (and we're going to need these functions we come to performing
deduction).
llvm-svn: 294266
This change adds a new type node, DeducedTemplateSpecializationType, to
represent a type template name that has been used as a type. This is modeled
around AutoType, and shares a common base class for representing a deduced
placeholder type.
We allow deduced class template types in a few more places than the standard
does: in conditions and for-range-declarators, and in new-type-ids. This is
consistent with GCC and with discussion on the core reflector. This patch
does not yet support deduced class template types being named in typename
specifiers.
llvm-svn: 293207
initialization of each array element:
* ArrayInitLoopExpr is a prvalue of array type with two subexpressions:
a common expression (an OpaqueValueExpr) that represents the up-front
computation of the source of the initialization, and a subexpression
representing a per-element initializer
* ArrayInitIndexExpr is a prvalue of type size_t representing the current
position in the loop
This will be used to replace the creation of explicit index variables in lambda
capture of arrays and copy/move construction of classes with array elements,
and also C++17 structured bindings of arrays by value (which inexplicably allow
copying an array by value, unlike all of C++'s other array declarations).
No uses of these nodes are introduced by this change, however.
llvm-svn: 289413