Add operands to represent if and deviceptr. Default clause is represented with
an attribute.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88331
This patch remove the printer/parser for the acc.data operation since its syntax
fits nicely with the assembly format. It reduces the maintenance for this op.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88330
This patch remove the detach and delete operands. Those operands represent the detach
and delete clauses that will appear in another operation acc.exit_data
Reviewed By: kiranktp, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D88326
This patch moves the memory space field from MemRefType and UnrankedMemRefType
to their base class BaseMemRefType so that it can be retrieved from it without
downcasting it to the specific memref.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D87649
This pass converts shape.cstr_* ops to eager (side-effecting)
error-handling code. After that conversion is done, the witnesses are
trivially satisfied and are replaced with `shape.const_witness true`.
Differential Revision: https://reviews.llvm.org/D87941
Conversion to LLVM becomes confusing and incorrect if someone tries to lower
STD -> LLVM and only then GPULaunchFuncOp to LLVM separately. Although it is
technically allowed now, it works incorrectly because of the argument
promotion. The correct way to use this conversion pattern is to add to the
STD->LLVM patterns before running the pass.
Differential Revision: https://reviews.llvm.org/D88147
- Use TypeRange instead of ArrayRef<Type> where possible.
- Change some of the custom builders to also use TypeRange
Differential Revision: https://reviews.llvm.org/D87944
- Change the default builders to use TypeRange instead of ArrayRef<Type>
- Custom builders defined in LinalgStructuredOps now conflict with the default
separate param ones, but the default collective params one is still needed. Resolve
this by replicating the collective param builder as a custom builder and skipping
the generation of default builders for these ops.
Differential Revision: https://reviews.llvm.org/D87926
Blocks in a region and operations in a block are organized in a linked list.
The C API only provides functions to append or to insert elements at the
specified numeric position in the list. The latter is expensive since it
requires to traverse the list. Add insert before/after functionality with low
cost that relies on the iplist elements being convertible to iterators.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D88148
* Removes the half-completed prior attempt at region/block mutation in favor of new approach to ownership.
* Will re-add mutation more correctly in a follow-on.
* Eliminates the detached state on blocks and regions, simplifying the ownership hierarchy.
* Adds both iterator and index based access at each level.
Differential Revision: https://reviews.llvm.org/D87982
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.
Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637
Recommit after fixing an ASAN issue: the callback lambda needs to be
allocated to a temporary to have its lifetime extended to the end of the
current block instead of just the current call expression.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D86392
This reverts commit 385c3f43fc.
Test mlir/test/Pass:dynamic-pipeline-fail-on-parent.mlir.test fails
when run with ASAN:
ERROR: AddressSanitizer: stack-use-after-scope on address ...
Reviewed By: bkramer, pifon2a
Differential Revision: https://reviews.llvm.org/D88079
Change the indexing map to iterate over the (b, x0, x1, z0, z1, q, k) instead of (b, x0, x1, k, q, z0, z1) to evaluate the convolution expression:
Y[b, x0, x1, k] = sum(W[z0, z1, q, k] * X[b, x0 + z0, x1 + z1, q], z0, z1, q)
This allows llvm auto vectorize to work and has better locality resulting significant performance improvments
Differential Revision: https://reviews.llvm.org/D87781
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.
Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D86392
This patch adds a utility based on SuperVectorizer to vectorize an
affine loop nest using a given vectorization strategy. This strategy allows
targeting specific loops for vectorization instead of relying of the
SuperVectorizer analysis to choose the right loops to vectorize.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85869
Add attributes for the async, wait and self clauses. These clauses can be present without
values. When this is the case they are modelled with an attribute instead of operands.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87991
This adds support for the interface and provides unambigious information
on the control flow as it is unconditional on any runtime values.
The code is tested through confirming that buffer-placement behaves as
expected.
Differential Revision: https://reviews.llvm.org/D87894
Vendor/device information are not resource limits. Moving to
target environment directly for better organization.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D87911
* Per thread https://llvm.discourse.group/t/revisiting-ownership-and-lifetime-in-the-python-bindings/1769
* Reworks contexts so it is always possible to get back to a py::object that holds the reference count for an arbitrary MlirContext.
* Retrofits some of the base classes to automatically take a reference to the context, elimintating keep_alives.
* More needs to be done, as discussed, when moving on to the operations/blocks/regions.
Differential Revision: https://reviews.llvm.org/D87886
I realized when using this that one can't get very good error messages
without an additional message attribute.
Differential Revision: https://reviews.llvm.org/D87875
constBuilderCall was not defined for TypeArrayAttr, resulting in tblgen not emitting the correct code when TypeArrayAttr is used with a default valued attribute.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D87907
Add missing operands to represent copyin with readonly modifier, copyout with zero modifier
and create with zero modifier.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87874
Following patch D87712, this patch switch AnyInteger for operands gangNum, gangStatic,
workerNum, vectoreLength and tileOperands to Index and AnyInteger.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87848
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
This op is a catch-all for creating witnesses from various random kinds
of constraints. In particular, I when dealing with extents directly,
which are of `index` type, one can directly use std ops for calculating
the predicates, and then use cstr_require for the final conversion to a
witness.
Differential Revision: https://reviews.llvm.org/D87871
- Change OpClass new method addition to find and eliminate any existing methods that
are made redundant by the newly added method, as well as detect if the newly added
method will be redundant and return nullptr in that case.
- To facilitate that, add the notion of resolved and unresolved parameters, where resolved
parameters have each parameter type known, so that redundancy checks on methods
with same name but different parameter types can be done.
- Eliminate existing code to avoid adding conflicting/redundant build methods and rely
on this new mechanism to eliminate conflicting build methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47095
Differential Revision: https://reviews.llvm.org/D87059
Add support to tile affine.for ops with parametric sizes (i.e., SSA
values). Currently supports hyper-rectangular loop nests with constant
lower bounds only. Move methods
- moveLoopBody(*)
- getTileableBands(*)
- checkTilingLegality(*)
- tilePerfectlyNested(*)
- constructTiledIndexSetHyperRect(*)
to allow reuse with constant tile size API. Add a test pass -test-affine
-parametric-tile to test parametric tiling.
Differential Revision: https://reviews.llvm.org/D87353
Add support for return values in affine.for yield along the same lines
as scf.for and affine.parallel.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D87437
Fold the operation if the source is a scalar constant or splat constant.
Update transform-patterns-matmul-to-vector.mlir because the broadcast ops are folded in the conversion.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D87703
This patch change the type of operands async, wait, numGangs, numWorkers and vectorLength from index
to AnyInteger to fit with acc.loop and the OpenACC specification.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87712
Adds a pattern that replaces a chain of two tensor_cast operations by a single tensor_cast operation if doing so will not remove constraints on the shapes.
`swapId` used to be a static function in `AffineStructures.cpp`. This diff makes it accessible from the external world by turning it into a member function of `FlatAffineConstraints`. This will be very helpful for other projects that need to manipulate the content of `FlatAffineConstraints`.
Differential Revision: https://reviews.llvm.org/D87766
ConvOp vectorization supports now only convolutions of static shapes with dimensions
of size either 3(vectorized) or 1(not) as underlying vectors have to be of static
shape as well. In this commit we add support for convolutions of any size as well as
dynamic shapes by leveraging existing matmul infrastructure for tiling of both input
and kernel to sizes accepted by the previous version of ConvOp vectorization.
In the future this pass can be extended to take "tiling mask" as a user input which
will enable vectorization of user specified dimensions.
Differential Revision: https://reviews.llvm.org/D87676
This patch provides C API for MLIR affine map.
- Implement C API for AffineMap class.
- Add Utils.h to include/mlir/CAPI/, and move the definition of the CallbackOstream to Utils.h to make sure mlirAffineMapPrint work correct.
- Add TODO for exposing the C API related to AffineExpr and mutable affine map.
Differential Revision: https://reviews.llvm.org/D87617
Add missing operands to represent copin with readonly modifier, copyout with zero
modifier, create with zero modifier and default clause.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87733
Numerous MLIR functions return instances of `StringRef` to refer to a
non-owning fragment of a string (usually owned by the context). This is a
relatively simple class that is defined in LLVM. Provide a simple wrapper in
the MLIR C API that contains the pointer and length of the string fragment and
use it for Standard attribute functions that return StringRef instead of the
previous, callback-based mechanism.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D87677
Rename 'setInsertionPointAfter(Value)' API to avoid ambiguity with
'setInsertionPointAfter(Operation *)' for SingleResult operations which
implicitly convert to Value (see D86756).
Differential Revision: https://reviews.llvm.org/D87155
Add a verifier for the loop op in the OpenACC dialect. Check basic restriction
from 2.9 Loop construct from the OpenACC 3.0 specs.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87546
This add canonicalizer for
- extracting an element from a dynamic_tensor_from_elements
- propagating constant operands to the type of dynamic_tensor_from_elements
Differential Revision: https://reviews.llvm.org/D87525
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86811
Added support to the Std dialect cast operations to do casts in vector types when feasible.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87410
This introduces a builder for the more general case that supports zero
elements (where the element type can't be inferred from the ValueRange,
since it might be empty).
Also, fix up some cases in ShapeToStandard lowering that hit this. It
happens very easily when dealing with shapes of 0-D tensors.
The SameOperandsAndResultElementType is redundant with the new
TypesMatchWith and prevented having zero elements.
Differential Revision: https://reviews.llvm.org/D87492
Addressed some CR issues pointed out in D87111. Formatting and other nits.
The original Diff D87111 - Add an option for unrolling loops up to a factor.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87313
This revision refactors and cleans up a bunch of things to simplify StructuredOpInterface
before work can proceed on Linalg on tensors:
- break out pieces of the StructuredOps trait that are part of the StructuredOpInterface,
- drop referenceIterators and referenceIndexingMaps that end up being more confusing than useful,
- drop NamedStructuredOpTrait
Previously only the input type was printed, and the parser applied it to
both input and output, creating an invalid transpose. Print and parse
both types, and verify that they match.
Differential Revision: https://reviews.llvm.org/D87462
This changes adjusts the documentation generation for the AVX512 dialect. The machanism to generate documentation was changed with 1a083f027f.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D87460
The LinalgTilingPattern class dervied from the base deletes the
original operation. This allows for the use case where the more
transformations are necessary on the original operation after
tiling. In such cases the pattern can derive from
LinalgBaseTilingPattern instead of LinalgTilingPattern.
Differential Revision: https://reviews.llvm.org/D87308
Currently the global operator!=(bool, bool) is selected due to the implicit bool
conversion operator. Since this is never the desired semantics, we give it a
standard operator!= and make the bool conversion explicit.
Depends On D86809
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86810
Also make the behavior of getting a dialect more forgiving, in the case where
there isn't a dialect associated with an attribute.
Depends On D86807
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86809
This patch adds a new named structured op to accompany linalg.matmul and
linalg.matvec. We needed it for our codegen, so I figured it would be useful
to add it to Linalg.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D87292
Rationale:
After some discussion we decided that it is safe to assume 32-bit
indices for all subscripting in the vector dialect (it is unlikely
the dialect will be used; or even work; for such long vectors).
So rather than detecting specific situations that can exploit
32-bit indices with higher parallel SIMD, we just optimize it
by default, and let users that don't want it opt-out.
Reviewed By: nicolasvasilache, bkramer
Differential Revision: https://reviews.llvm.org/D87404
Also refactor the getViewSizes method to work on LinalgOp instead of
being a templated version. Keeping the templated version for
compatibility.
Differential Revision: https://reviews.llvm.org/D87303
This commit specifies reduction dimensions for ConvOps. This prevents
running reduction loops in parallel and enables easier detection of kernel dimensions
which we will need later on.
Differential Revision: https://reviews.llvm.org/D87288
Take advantage of the new `dynamic_tensor_from_elements` operation in `std`.
Instead of stack-allocated memory, we can now lower directly to a single `std`
operation.
Differential Revision: https://reviews.llvm.org/D86935
- Introduce a new BlockRange class to represent range of blocks (constructible from
an ArrayRef<Block *> or a SuccessorRange);
- Change Operation::create() methods to use TypeRange for result types, ValueRange for
operands and BlockRange for successors.
Differential Revision: https://reviews.llvm.org/D86985
Currently, there is no option to allow for unrolling a loop up to a specific factor (specified by the user).
The code for doing that is there and there are benefits when unrolling is done to smaller loops (smaller than the factor specified).
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D87111
While there
- De-templatify code that can use function_ref
- Make BoundCaptures usable when they're const
- Address post-submit review comment (static function into global namespace)
In this commit a new way of convolution ops lowering is introduced.
The conv op vectorization pass lowers linalg convolution ops
into vector contractions. This lowering is possible when conv op
is first tiled by 1 along specific dimensions which transforms
it into dot product between input and kernel subview memory buffers.
This pass converts such conv op into vector contraction and does
all necessary vector transfers that make it work.
Differential Revision: https://reviews.llvm.org/D86619
This was likely overlooked when ValueRange was first introduced. There is no
reason why StructuredIndexed needs specifically an ArrayRef so use ValueRange
for better type compatibility with the rest of the APIs.
Reviewed By: nicolasvasilache, mehdi_amini
Differential Revision: https://reviews.llvm.org/D87127
With `dynamic_tensor_from_elements` tensor values of dynamic size can be
created. The body of the operation essentially maps the index space to tensor
elements.
Declare SCF operations in the `scf` namespace to avoid name clash with the new
`std.yield` operation. Resolve ambiguities between `linalg/shape/std/scf.yield`
operations.
Differential Revision: https://reviews.llvm.org/D86276
Vector to SCF conversion still had issues due to the interaction with the natural alignment derived by the LLVM data layout. One traditional workaround is to allocate aligned. However, this does not always work for vector sizes that are non-powers of 2.
This revision implements a more portable mechanism where the intermediate allocation is always a memref of elemental vector type. AllocOp is extended to use the natural LLVM DataLayout alignment for non-scalar types, when the alignment is not specified in the first place.
An integration test is added that exercises the transfer to scf.for + scalar lowering with a 5x5 transposition.
Differential Revision: https://reviews.llvm.org/D87150
Based on the PyType and PyConcreteType classes, this patch implements the bindings of Shaped Type, Tensor Type and MemRef Type subclasses.
The Tensor Type and MemRef Type are bound as ranked and unranked separately.
This patch adds the ***GetChecked C API to make sure the python side can get a valid type or a nullptr.
Shaped type is not a kind of standard types, it is the base class for vectors, memrefs and tensors, this patch binds the PyShapedType class as the base class of Vector Type, Tensor Type and MemRef Type subclasses.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D87091
These fields will be used to choose/influence patterns for
SPIR-V code generation.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D87106
Historically, the operations in the MLIR's LLVM dialect only checked that the
operand are of LLVM dialect type without more detailed constraints. This was
due to LLVM dialect types wrapping LLVM IR types and having clunky verification
methods. With the new first-class modeling, it is possible to define type
constraints similarly to other dialects and use them to enforce some
correctness rules in verifiers instead of having LLVM assert during translation
to LLVM IR. This hardening discovered several issues where MLIR was producing
LLVM dialect operations that cannot exist in LLVM IR.
Depends On D85900
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85901
When allowed, use 32-bit indices rather than 64-bit indices in the
SIMD computation of masks. This runs up to 2x and 4x faster on
a number of AVX2 and AVX512 microbenchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D87116
This is allowing to build an OpPassManager from a StringRef instead of an
Identifier, which enables building pipelines without an MLIRContext.
An identifier is still cached on-demand on the OpPassManager for efficiency
during the IR traversal.
This patch adds basic support for vectorization of uniform values to SuperVectorizer.
For now, only invariant values to the target vector loops are considered uniform. This
enables the vectorization of loops that use function arguments and external definitions
to the vector loops. We could extend uniform support in the future if we implement some
kind of divergence analysis algorithm.
Reviewed By: nicolasvasilache, aartbik
Differential Revision: https://reviews.llvm.org/D86756
This allows to defers the check for traits to the execution instead of forcing it on the pipeline creation.
In particular, this is making our pipeline creation tolerant to dialects not being loaded in the context yet.
Reviewed By: rriddle, GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D86915
Instead of storing a StringRef, we keep an Identifier which otherwise requires a lock on the context to retrieve.
This will allow to get an Identifier for any registered Operation for "free".
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86994
In this PR, the users of BufferPlacement can configure
BufferAssginmentTypeConverter. These new configurations would give the user more
freedom in the process of converting function signature, and return and call
operation conversions.
These are the new features:
- Accepting callback functions for decomposing types (i.e. 1 to N type
conversion such as unpacking tuple types).
- Defining ResultConversionKind for specifying whether a function result
with a certain type should be appended to the function arguments list or
should be kept as function result. (Usage:
converter.setResultConversionKind<MemRefType>(AppendToArgumentList))
- Accepting callback functions for composing or decomposing values (i.e. N
to 1 and 1 to N value conversion).
Differential Revision: https://reviews.llvm.org/D85133
This reverts commit 94f5d24877 because
of failing the following tests:
MLIR :: Dialect/Linalg/tensors-to-buffers.mlir
MLIR :: Transforms/buffer-placement-preparation-allowed-memref-results.mlir
MLIR :: Transforms/buffer-placement-preparation.mlir
In this PR, the users of BufferPlacement can configure
BufferAssginmentTypeConverter. These new configurations would give the user more
freedom in the process of converting function signature, and return and call
operation conversions.
These are the new features:
- Accepting callback functions for decomposing types (i.e. 1 to N type
conversion such as unpacking tuple types).
- Defining ResultConversionKind for specifying whether a function result
with a certain type should be appended to the function arguments list or
should be kept as function result. (Usage:
converter.setResultConversionKind<MemRefType>(AppendToArgumentList))
- Accepting callback functions for composing or decomposing values (i.e. N
to 1 and 1 to N value conversion).
Differential Revision: https://reviews.llvm.org/D85133
Unsigned and Signless attributes use uintN_t and signed attributes use intN_t, where N is the fixed width. The 1-bit variants use bool.
Differential Revision: https://reviews.llvm.org/D86739
This patch add the missing operands to the acc.loop operation. Only the device_type
information is not part of the operation for now.
Reviewed By: rriddle, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D86753
This adds some initial support for regions and does not support formatting the specific arguments of a region. For now this can be achieved by using a custom directive that formats the arguments and then parses the region.
Differential Revision: https://reviews.llvm.org/D86760
Symbol names are a special form of StringAttr that get treated specially in certain areas, such as formatting. This revision adds a special derived attr for them in ODS and adds support in the assemblyFormat for formatting them properly.
Differential Revision: https://reviews.llvm.org/D86759
This revision adds support for custom directives to the declarative assembly format. This allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. The custom directive is structured as follows:
```
custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`
```
`user-directive` is used as a suffix when this directive is used during printing and parsing. When parsing, `parseUserDirective` will be invoked. When printing, `printUserDirective` will be invoked. The first parameter to these methods must be a reference to either the OpAsmParser, or OpAsmPrinter. The type of rest of the parameters is dependent on the `Params` specified in the assembly format.
Differential Revision: https://reviews.llvm.org/D84719
* This is just enough to create regions/blocks and iterate over them.
* Does not yet implement the preferred iteration strategy (python pseudo containers).
* Refinements need to come after doing basic mappings of operations and values so that the whole hierarchy can be used.
Differential Revision: https://reviews.llvm.org/D86683
This is intended to ease the transition for client with a lot of
dependencies. It'll be removed in the coming weeks.
Differential Revision: https://reviews.llvm.org/D86755
Adding a conversion pattern for the parallel Operation. This will
help the conversion of parallel operation with standard dialect to
parallel operation with llvm dialect. The type conversion of the block
arguments in a parallel region are controlled by the pattern for the
parallel Operation. Without this pattern, a parallel Operation with
block arguments cannot be converted from standard to LLVM dialect.
Other OpenMP operations without regions are marked as legal. When
translation of OpenMP operations with regions are added then patterns
for these operations can also be added.
Also uses all the standard to llvm patterns. Patterns of other dialects
can be added later if needed.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86273
When dealing with dialects that will results in function calls to
external libraries, it is important to be able to handle maps as some
dialects may require mapped data. Before this patch, the detection of
whether normalization can apply or not, operations are compared to an
explicit list of operations (`alloc`, `dealloc`, `return`) or to the
presence of specific operation interfaces (`AffineReadOpInterface`,
`AffineWriteOpInterface`, `AffineDMAStartOp`, or `AffineDMAWaitOp`).
This patch add a trait, `MemRefsNormalizable` to determine if an
operation can have its `memrefs` normalized.
This trait can be used in turn by dialects to assert that such
operations are compatible with normalization of `memrefs` with
nontrivial memory layout specification. An example is given in the
literal tests.
Differential Revision: https://reviews.llvm.org/D86236
This patch introduces a hook to encode descriptor set
and binding number into `spv.globalVariable`'s symbolic name. This
allows to preserve this information, and at the same time legalize
the global variable for the conversion to LLVM dialect.
This is required for `mlir-spirv-cpu-runner` to convert kernel
arguments into LLVM.
Also, a couple of some nits added:
- removed unused comment
- changed to a capital letter in the comment
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86515
This makes OpPassManager more of a "container" of passes and not responsible to drive the execution.
As such we also make it constructible publicly, which will allow to build arbitrary pipeline decoupled from the execution. We'll make use of this facility to expose "dynamic pipeline" in the future.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86391
This patch adds an optional name to SPIR-V module.
This will help with lowering from GPU dialect (so that we
can pass the kernel module name) and will be more naturally
aligned with `GPUModuleOp`/`ModuleOp`.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86386
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.
An example of this representation is shown below:
```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite %root {
pdl.replace %root with (%inputOperand)
}
}
// May be represented in the interpreter dialect as follows:
module {
func @matcher(%arg0: !pdl.operation) {
pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
^bb1:
pdl_interp.return
^bb2:
pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
^bb3:
pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
^bb4:
%0 = pdl_interp.get_operand 0 of %arg0
pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
^bb5:
%1 = pdl_interp.get_result 0 of %arg0
pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
^bb6:
pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
}
module @rewriters {
func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
pdl_interp.replace %arg1 with(%arg0)
pdl_interp.return
}
}
}
```
Differential Revision: https://reviews.llvm.org/D84579
This assertion does not achieve what it meant to do originally, as it
would fire only when applied to an unregistered operation, which is a
fairly rare circumstance (it needs a dialect or context allowing
unregistered operation in the input in the first place).
Instead we relax it to only fire when it should have matched but didn't
because of the misconfiguration.
Differential Revision: https://reviews.llvm.org/D86588
Provides fast, generic way of setting a mask up to a certain
point. Potential use cases that may benefit are create_mask
and transfer_read/write operations in the vector dialect.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D86501
* Generic mlir.ir.Attribute class.
* First standard attribute (mlir.ir.StringAttr), following the same pattern as generic vs standard types.
* NamedAttribute class.
Differential Revision: https://reviews.llvm.org/D86250
This will allow out-of-tree translation to register the dialects they expect
to see in their input, on the model of getDependentDialects() for passes.
Differential Revision: https://reviews.llvm.org/D86409
Refactor the way the reduction tree pass works in the MLIR Reduce tool by introducing a set of utilities that facilitate the implementation of new Reducer classes to be used in the passes.
This will allow for the fast implementation of general transformations to operate on all mlir modules as well as custom transformations for different dialects.
These utilities allow for the implementation of Reducer classes by simply defining a method that indexes the operations/blocks/regions to be transformed and a method to perform the deletion or transfomration based on the indexes.
Create the transformSpace class member in the ReductionNode class to keep track of the indexes that have already been transformed or deleted at a current level.
Delete the FunctionReducer class and replace it with the OpReducer class to reflect this new API while performing the same transformation and allowing the instantiation of a reduction pass for different types of operations at the module's highest hierarchichal level.
Modify the SinglePath Traversal method to reflect the use of the new API.
Reviewed: jpienaar
Differential Revision: https://reviews.llvm.org/D85591
Add a folder to the affine.parallel op so that loop bounds expressions are canonicalized.
Additionally, a new AffineParallelNormalizePass is added to adjust affine.parallel ops so that the lower bound is always 0 and the upper bound always represents a range with a step size of 1.
Differential Revision: https://reviews.llvm.org/D84998
This patch adds the capability to perform constraint redundancy checks for `FlatAffineConstraints` using `Simplex`, via a new member function `FlatAffineConstraints::removeRedundantConstraints`. The pre-existing redundancy detection algorithm runs a full rational emptiness check for each inequality separately for checking redundancy. Leveraging the existing `Simplex` infrastructure, in this patch we have an algorithm for redundancy checks that can check each constraint by performing pivots on the tableau, which provides an alternative to running Fourier-Motzkin elimination for each constraint separately.
Differential Revision: https://reviews.llvm.org/D84935
- This utility to merge a block anywhere into another one can help inline single
block regions into other blocks.
- Modified patterns test to use the new function.
Differential Revision: https://reviews.llvm.org/D86251
Add the unsigned complements to the existing FPToSI and SIToFP operations in the
standard dialect, with one-to-one lowerings to the corresponding LLVM operations.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85557
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.
PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.
An example pattern is shown below:
```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
// External input operand values are specified via `pdl.input` operations.
// Result types are constrainted via `pdl.type` operations.
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite(%root) {
pdl.replace %root with (%inputOperand)
}
}
```
This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ
Differential Revision: https://reviews.llvm.org/D84578
Provide C API for MLIR standard attributes. Since standard attributes live
under lib/IR in core MLIR, place the C APIs in the IR library as well (standard
ops will go in a separate library).
Affine map and integer set attributes are only exposed as placeholder types
with IsA support due to the lack of C APIs for the corresponding types.
Integer and floating point attribute APIs expecting APInt and APFloat are not
exposed pending decision on how to support APInt and APFloat.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86143
* The binding for Type is trivial and should be non-controversial.
* The way that I define the IntegerType should serve as a pattern for what I want to do next.
* I propose defining the rest of the standard types in this fashion and then generalizing for dialect types as necessary.
* Essentially, creating/accessing a concrete Type (vs interacting with the string form) is done by "casting" to the concrete type (i.e. IntegerType can be constructed with a Type and will throw if the cast is illegal).
* This deviates from some of our previous discussions about global objects but I think produces a usable API and we should go this way.
Differential Revision: https://reviews.llvm.org/D86179
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
LinalgDistribution options to allow more general distributions.
Changing the signature of the callback to send in the ranges for all
the parallel loops and expect a vector with the Value to use for the
processor-id and number-of-processors for each of the parallel loops.
Differential Revision: https://reviews.llvm.org/D86095
There should be an equivalent std.floor op to std.ceil. This includes
matching lowerings for SPIRV, NVVM, ROCDL, and LLVM.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85940
Create a reduction pass that accepts an optimization pass as argument
and only replaces the golden module in the pipeline if the output of the
optimization pass is smaller than the input and still exhibits the
interesting behavior.
Add a -test-pass option to test individual passes in the MLIR Reduce
tool.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D84783
Provide C API for MLIR standard types. Since standard types live under lib/IR
in core MLIR, place the C APIs in the IR library as well (standard ops will go
into a separate library). This also defines a placeholder for affine maps that
are necessary to construct a memref, but are not yet exposed to the C API.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86094
This function is available on llvm::Type and has been used by some clients of
the LLVM dialect before the transition. Implement the MLIR counterpart.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D85847
- Add variants of getAnalysis() and friends that operate on a specific derived
operation types.
- Add OpPassManager::getAnalysis() to always call the base getAnalysis() with OpT.
- With this, an OperationPass can call getAnalysis<> using an analysis type that
is generic (works on Operation *) or specific to the OpT for the pass. Anything
else will fail to compile.
- Extend AnalysisManager unit test to test this, and add a new PassManager unit
test to test this functionality in the context of an OperationPass.
Differential Revision: https://reviews.llvm.org/D84897
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
This will help refactoring some of the tools to prepare for the explicit registration of
Dialects.
Differential Revision: https://reviews.llvm.org/D86023
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
Explicitly declare ReductionTreeBase base class in ReductionTreePass copy constructor.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D85983
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Masked loading/storing in various forms can be optimized
into simpler memory operations when the mask is all true
or all false. Note that the backend does similar optimizations
but doing this early may expose more opportunities for further
optimizations. This further prepares progressively lowering
transfer read and write into 1-D memory operations.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D85769
This revision removes all of the lingering usages of Type::getKind. A consequence of this is that FloatType is now split into 4 derived types that represent each of the possible float types(BFloat16Type, Float16Type, Float32Type, and Float64Type). Other than this split, this revision is NFC.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D85566
These hooks were introduced before the Interfaces mechanism was available.
DialectExtractElementHook is unused and entirely removed. The
DialectConstantFoldHook is used a fallback in the
operation fold() method, and is replaced by a DialectInterface.
The DialectConstantDecodeHook is used for interpreting OpaqueAttribute
and should be revamped, but is replaced with an interface in 1:1 fashion
for now.
Differential Revision: https://reviews.llvm.org/D85595
- Add "using namespace mlir::tblgen" in several of the TableGen/*.cpp files and
eliminate the tblgen::prefix to reduce code clutter.
Differential Revision: https://reviews.llvm.org/D85800
Provide printing functions for most IR objects in C API (except Region that
does not have a `print` function, and Module that is expected to be printed as
Operation instead). The printing is based on a callback that is called with
chunks of the string representation and forwarded user-defined data.
Reviewed By: stellaraccident, Jing, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85748
Using intptr_t is a consensus for MLIR C API, but the change was missing
from 75f239e975 (that was using unsigned initially) due to a
misrebase.
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85751
This patch adds the translation of the proc_bind clause in a
parallel operation.
The values that can be specified for the proc_bind clause are
specified in the OMP.td tablegen file in the llvm/Frontend/OpenMP
directory. From this single source of truth enumeration for
proc_bind is generated in llvm and mlir (used in specification of
the parallel Operation in the OpenMP dialect). A function to return
the enum value from the string representation is also generated.
A new header file (DirectiveEmitter.h) containing definitions of
classes directive, clause, clauseval etc is created so that it can
be used in mlir as well.
Reviewers: clementval, jdoerfert, DavidTruby
Differential Revision: https://reviews.llvm.org/D84347
Now that LLVM dialect types are implemented directly in the dialect, we can use
MLIR hooks for verifying type construction invariants. Implement the verifiers
and use them in the parser.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85663
Linalg to processors.
This changes adds infrastructure to distribute the loops generated in
Linalg to processors at the time of generation. This addresses use
case where the instantiation of loop is done just to distribute
them. The option to distribute is added to TilingOptions for now and
will allow specifying the distribution as a transformation option,
just like tiling and promotion are specified as options.
Differential Revision: https://reviews.llvm.org/D85147
- Fix ODS framework to suppress build methods that infer result types and are
ambiguous with collective variants. This applies to operations with a single variadic
inputs whose result types can be inferred.
- Extended OpBuildGenTest to test these kinds of ops.
Differential Revision: https://reviews.llvm.org/D85060
This diff attempts to resolve the TODO in `getOpIndexSet` (formerly
known as `getInstIndexSet`), which states "Add support to handle IfInsts
surronding `op`".
Major changes in this diff:
1. Overload `getIndexSet`. The overloaded version considers both
`AffineForOp` and `AffineIfOp`.
2. The `getInstIndexSet` is updated accordingly: its name is changed to
`getOpIndexSet` and its implementation is based on a new API `getIVs`
instead of `getLoopIVs`.
3. Add `addAffineIfOpDomain` to `FlatAffineConstraints`, which extracts
new constraints from the integer set of `AffineIfOp` and merges it to
the current constraint system.
4. Update how a `Value` is determined as dim or symbol for
`ValuePositionMap` in `buildDimAndSymbolPositionMaps`.
Differential Revision: https://reviews.llvm.org/D84698
This reverts commit 9f24640b7e.
We hit some dead-locks on thread exit in some configurations: TLS exit handler is taking a lock.
Temporarily reverting this change as we're debugging what is going on.
Implement the Reduction Tree Pass framework as part of the MLIR Reduce tool. This is a parametarizable pass that allows for the implementation of custom reductions passes in the tool.
Implement the FunctionReducer class as an example of a Reducer class parameter for the instantiation of a Reduction Tree Pass.
Create a pass pipeline with a Reduction Tree Pass with the FunctionReducer class specified as parameter.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D83969
This also beefs up the test coverage:
- Make unranked memref testing consistent with ranked memrefs.
- Add testing for the invalid element type cases.
This is not quite NFC: index types are now allowed in unranked memrefs.
Differential Revision: https://reviews.llvm.org/D85541
This revision refactors the default definition of the attribute and type `classof` methods to use the TypeID of the concrete class instead of invoking the `kindof` method. The TypeID is already used as part of uniquing, and this allows for removing the need for users to define any of the type casting utilities themselves.
Differential Revision: https://reviews.llvm.org/D85356
Subclass data is useful when a certain amount of memory is allocated, but not all of it is used. In the case of Type, that hasn't been the case for a while and the subclass is just taking up a full `unsigned`. Removing this frees up ~8 bytes for almost every type instance.
Differential Revision: https://reviews.llvm.org/D85348
This class allows for defining thread local objects that have a set non-static lifetime. This internals of the cache use a static thread_local map between the various different non-static objects and the desired value type. When a non-static object destructs, it simply nulls out the entry in the static map. This will leave an entry in the map, but erase any of the data for the associated value. The current use cases for this are in the MLIRContext, meaning that the number of items in the static map is ~1-2 which aren't particularly costly enough to warrant the complexity of pruning. If a use case arises that requires pruning of the map, the functionality can be added.
This is especially useful in the context of MLIR for implementing thread-local caching of context level objects that would otherwise have very high lock contention. This revision adds a thread local cache in the MLIRContext for attributes, identifiers, and types to reduce some of the locking burden. This led to a speedup of several hundred miliseconds when compiling a conversion pass on a very large mlir module(>300K operations).
Differential Revision: https://reviews.llvm.org/D82597
This allows for bucketing the different possible storage types, with each bucket having its own allocator/mutex/instance map. This greatly reduces the amount of lock contention when multi-threading is enabled. On some non-trivial .mlir modules (>300K operations), this led to a compile time decrease of a single conversion pass by around half a second(>25%).
Differential Revision: https://reviews.llvm.org/D82596
This change adds initial support needed to generate OpenCL compliant SPIRV.
If Kernel capability is declared then memory model becomes OpenCL.
If Addresses capability is declared then addressing model becomes Physical64.
Additionally for Kernel capability interface variable ABI attributes are not
generated as entry point function is expected to have normal arguments.
Differential Revision: https://reviews.llvm.org/D85196
This revision adds a folding pattern to replace affine.min ops by the actual min value, when it can be determined statically from the strides and bounds of enclosing scf loop .
This matches the type of expressions that Linalg produces during tiling and simplifies boundary checks. For now Linalg depends both on Affine and SCF but they do not depend on each other, so the pattern is added there.
In the future this will move to a more appropriate place when it is determined.
The canonicalization of AffineMinOp operations in the context of enclosing scf.for and scf.parallel proceeds by:
1. building an affine map where uses of the induction variable of a loop
are replaced by `%lb + %step * floordiv(%iv - %lb, %step)` expressions.
2. checking if any of the results of this affine map divides all the other
results (in which case it is also guaranteed to be the min).
3. replacing the AffineMinOp by the result of (2).
The algorithm is functional in simple parametric tiling cases by using semi-affine maps. However simplifications of such semi-affine maps are not yet available and the canonicalization does not succeed yet.
Differential Revision: https://reviews.llvm.org/D82009
This patch moves the registration to a method in the MLIRContext: getOrCreateDialect<ConcreteDialect>()
This method requires dialect to provide a static getDialectNamespace()
and store a TypeID on the Dialect itself, which allows to lazyily
create a dialect when not yet loaded in the context.
As a side effect, it means that duplicated registration of the same
dialect is not an issue anymore.
To limit the boilerplate, TableGen dialect generation is modified to
emit the constructor entirely and invoke separately a "init()" method
that the user implements.
Differential Revision: https://reviews.llvm.org/D85495
Original modeling of LLVM IR types in the MLIR LLVM dialect had been wrapping
LLVM IR types and therefore required the LLVMContext in which they were created
to outlive them, which was solved by placing the LLVMContext inside the dialect
and thus having the lifetime of MLIRContext. This has led to numerous issues
caused by the lack of thread-safety of LLVMContext and the need to re-create
LLVM IR modules, obtained by translating from MLIR, in different LLVM contexts
to enable parallel compilation. Similarly, llvm::Module had been introduced to
keep track of identified structure types that could not be modeled properly.
A recent series of commits changed the modeling of LLVM IR types in the MLIR
LLVM dialect so that it no longer wraps LLVM IR types and has no dependence on
LLVMContext and changed the ownership model of the translated LLVM IR modules.
Remove LLVMContext and LLVM modules from the implementation of MLIR LLVM
dialect and clean up the remaining uses.
The only part of LLVM IR that remains necessary for the LLVM dialect is the
data layout. It should be moved from the dialect level to the module level and
replaced with an MLIR-based representation to remove the dependency of the
LLVMDialect on LLVM IR library.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85445
Due to the original type system implementation, LLVMDialect in MLIR contains an
LLVMContext in which the relevant objects (types, metadata) are created. When
an MLIR module using the LLVM dialect (and related intrinsic-based dialects
NVVM, ROCDL, AVX512) is converted to LLVM IR, it could only live in the
LLVMContext owned by the dialect. The type system no longer relies on the
LLVMContext, so this limitation can be removed. Instead, translation functions
now take a reference to an LLVMContext in which the LLVM IR module should be
constructed. The caller of the translation functions is responsible for
ensuring the same LLVMContext is not used concurrently as the translation no
longer uses a dialect-wide context lock.
As an additional bonus, this change removes the need to recreate the LLVM IR
module in a different LLVMContext through printing and parsing back, decreasing
the compilation overhead in JIT and GPU-kernel-to-blob passes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85443
This new pattern mixes vector.transpose and direct lowering to vector.reduce.
This allows more progressive lowering than immediately going to insert/extract and
composes more nicely with other canonicalizations.
This has 2 use cases:
1. for very wide vectors the generated IR may be much smaller
2. when we have a custom lowering for transpose ops we can target it directly
rather than rely LLVM
Differential Revision: https://reviews.llvm.org/D85428
When any of the memrefs in a structured linalg op has a zero dimension, it becomes dead.
This is consistent with the fact that linalg ops deduce their loop bounds from their operands.
Note however that this is not the case for the `tensor<0xelt_type>` which is a special convention
that must be lowered away into either `memref<elt_type>` or just `elt_type` before this
canonicalization can kick in.
Differential Revision: https://reviews.llvm.org/D85413
The RewritePattern will become one of several, and will be part of the LLVM conversion pass (instead of a separate pass following LLVM conversion).
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D84946
Historical modeling of the LLVM dialect types had been wrapping LLVM IR types
and therefore needed access to the instance of LLVMContext stored in the
LLVMDialect. The new modeling does not rely on that and only needs the
MLIRContext that is used for uniquing, similarly to other MLIR types. Change
LLVMType::get<Kind>Ty functions to take `MLIRContext *` instead of
`LLVMDialect *` as first argument. This brings the code base closer to
completely removing the dependence on LLVMContext from the LLVMDialect,
together with additional support for thread-safety of its use.
Depends On D85371
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85372
This prepares for the removal of llvm::Module and LLVMContext from the
mlir::LLVMDialect.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85371
The intrinsics were already supported and vector.transfer_read/write lowered
direclty into these operations. By providing them as individual ops, however,
clients can used them directly, and it opens up progressively lowering transfer
operations at higher levels (rather than direct lowering to LLVM IR as done now).
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D85357
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
`promoteMemRefDescriptors` also converts types of every operand, not only
memref-typed ones. I think `promoteMemRefDescriptors` name does not imply that.
Differential Revision: https://reviews.llvm.org/D85325
Previously, `LinalgOperand` is defined with `Type<Or<..,>>`, which produces
not very readable error messages when it is not matched, e.g.,
```
'linalg.generic' op operand #0 must be anonymous_326, but got ....
```
It is simply because the `description` property is not properly set.
This diff switches to use `AnyTypeOf` for `LinalgOperand`, which automatically
generates a description based on the allowed types provided.
As a result, the error message now becomes:
```
'linalg.generic' op operand #0 must be ranked tensor of any type values or strided memref of any type values, but got ...
```
Which is clearer and more informative.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84428
Introduce an initial version of C API for MLIR core IR components: Value, Type,
Attribute, Operation, Region, Block, Location. These APIs allow for both
inspection and creation of the IR in the generic form and intended for wrapping
in high-level library- and language-specific constructs. At this point, there
is no stability guarantee provided for the API.
Reviewed By: stellaraccident, lattner
Differential Revision: https://reviews.llvm.org/D83310
The extent tensor type is a `tensor<?xindex>` that is used in the shape dialect.
To facilitate the use of this type when working with the shape dialect, we
expose the helper function for its construction.
Differential Revision: https://reviews.llvm.org/D85121
- Moved TypeRange into its own header/cpp file, and add hashing support.
- Change FunctionType::get() and TupleType::get() to use TypeRange
Differential Revision: https://reviews.llvm.org/D85075
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = linalg.fill(%extra_alloc, %pad)
%3 = subview %view [...][...][...]
linalg.copy(%3, %alloc)
memref_cast %extra_alloc: memref<B...> to memref<A...>
scf.yield %4 : memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
These are intended to smoothen the transition and may be removed in the future
in favor of more MLIR-compatible APIs. They intentionally have the same
semantics as the existing functions, which must remain stable until the
transition is complete.
Depends On D85019
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85020
With new LLVM dialect type modeling, the dialect types no longer wrap LLVM IR
types. Therefore, they need to be translated to and from LLVM IR during export
and import. Introduce the relevant functionality for translating types. It is
currently exercised by an ad-hoc type translation roundtripping test that will
be subsumed by the actual translation test when the type system transition is
complete.
Depends On D84339
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D85019
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
%3 = vector.type_cast %extra_alloc : memref<...> to
memref<vector<...>> store %2, %3[] : memref<vector<...>> %4 =
memref_cast %extra_alloc: memref<B...> to memref<A...> scf.yield %4 :
memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
Differential Revision: https://reviews.llvm.org/D84631
This reverts commit 35b65be041.
Build is broken with -DBUILD_SHARED_LIBS=ON with some undefined
references like:
VectorTransforms.cpp:(.text._ZN4llvm12function_refIFvllEE11callback_fnIZL24createScopedInBoundsCondN4mlir25VectorTransferOpInterfaceEE3$_8EEvlll+0xa5): undefined reference to `mlir::edsc::op::operator+(mlir::Value, mlir::Value)'
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This model makes thread-safe type manipulation hard and is being
progressively replaced with a cleaner MLIR model that replicates the type
system. Introduce a set of classes reflecting the LLVM IR type system in MLIR
instead of wrapping the existing types. These are currently introduced as
separate classes without affecting the dialect flow, and are exercised through
a test dialect. Once feature parity is reached, the old implementation will be
gradually substituted with the new one.
Depends On D84171
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D84339
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
%3 = vector.type_cast %extra_alloc : memref<...> to
memref<vector<...>> store %2, %3[] : memref<vector<...>> %4 =
memref_cast %extra_alloc: memref<B...> to memref<A...> scf.yield %4 :
memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
Differential Revision: https://reviews.llvm.org/D84631
This is an operation that can returns a new ValueShape with a different shape. Useful for composing shape function calls and reusing existing shape transfer functions.
Just adding the op in this change.
Differential Revision: https://reviews.llvm.org/D84217
The current output is a bit clunky and requires including files+macros everywhere, or manually wrapping the file inclusion in a registration function. This revision refactors the pass backend to automatically generate `registerFooPass`/`registerFooPasses` functions that wrap the pass registration. `gen-pass-decls` now takes a `-name` input that specifies a tag name for the group of passes that are being generated. For each pass, the generator now produces a `registerFooPass` where `Foo` is the name of the definition specified in tablegen. It also generates a `registerGroupPasses`, where `Group` is the tag provided via the `-name` input parameter, that registers all of the passes present.
Differential Revision: https://reviews.llvm.org/D84983
This change allow CooperativeMatrix Load/Store operations to use pointer type
that may not match the matrix element type. This allow us to declare buffer
with a larger type size than the matrix element type. This follows SPIR-V spec
and this is needed to be able to use cooperative matrix in combination with
shared local memory efficiently.
Differential Revision: https://reviews.llvm.org/D84993
In a context in which `shape.broadcast` is known not to produce an error value,
we want it to operate solely on extent tensors. The operation's behavior is
then undefined in the error case as the result type cannot hold this value.
Differential Revision: https://reviews.llvm.org/D84933
Replaced definition of named ND ConvOps with tensor comprehension
syntax which reduces boilerplate code significantly. Furthermore,
new ops to support TF convolutions added (without strides and dilations).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84628
-- Introduces a pass that normalizes the affine layout maps to the identity layout map both within and across functions by rewriting function arguments and call operands where necessary.
-- Memref normalization is now implemented entirely in the module pass '-normalize-memrefs' and the limited intra-procedural version has been removed from '-simplify-affine-structures'.
-- Run using -normalize-memrefs.
-- Return ops are not handled and would be handled in the subsequent revisions.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D84490
This patch introduces new intrinsics in LLVM dialect:
- `llvm.intr.floor`
- `llvm.intr.maxnum`
- `llvm.intr.minnum`
- `llvm.intr.smax`
- `llvm.intr.smin`
These intrinsics correspond to SPIR-V ops from GLSL
extended instruction set (`spv.GLSL.Floor`, `spv.GLSL.FMax`,
`spv.GLSL.FMin`, `spv.GLSL.SMax` and `spv.GLSL.SMin`
respectively). Also conversion patterns for them were added.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84661
This commit is part of a greater project which aims to add
full end-to-end support for convolutions inside mlir. The
reason behind having conv ops for each rank rather than
having one generic ConvOp is to enable better optimizations
for every N-D case which reflects memory layout of input/kernel
buffers better and simplifies code as well. We expect plain linalg.conv
to be progressively retired.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D83879
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
This adds conversions for const_size and to_extent_tensor. Also, cast-like operations are now folded away if the source and target types are the same.
Differential Revision: https://reviews.llvm.org/D84745
- Add getArgumentTypes() to Region (missed from before)
- Adopt Region argument API in `hasMultiplyAddBody`
- Fix 2 typos in comments
Differential Revision: https://reviews.llvm.org/D84807
The MemRefDataFlow pass does store to load forwarding
only for affine store/loads. This patch updates the pass
to use affine read/write interface which enables vector
forwarding.
Reviewed By: dcaballe, bondhugula, ftynse
Differential Revision: https://reviews.llvm.org/D84302
For the purpose of vector transforms, the Tablegen-based infra is subsumed by simple C++ pattern application. Deprecate declarative transforms whose complexity does not pay for itself.
Differential Revision: https://reviews.llvm.org/D84753
- replace DotOp, now that DRR rules have been dropped.
- Capture arguments mismatch in the parser. The number of parsed arguments must
equal the number of expected arguments.
Reviewed By: ftynse, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D82952
The LowerAffine psas was a FunctionPass only for legacy
reasons. Making this Op-agnostic allows it to be used from command
line when affine expressions are within operations other than
`std.func`.
Differential Revision: https://reviews.llvm.org/D84590
Introduce support for mutable storage in the StorageUniquer infrastructure.
This makes MLIR have key-value storage instead of just uniqued key storage. A
storage instance now contains a unique immutable key and a mutable value, both
stored in the arena allocator that belongs to the context. This is a
preconditio for supporting recursive types that require delayed initialization,
in particular LLVM structure types. The functionality is exercised in the test
pass with trivial self-recursive type. So far, recursive types can only be
printed in parsed in a closed type system. Removing this restriction is left
for future work.
Differential Revision: https://reviews.llvm.org/D84171
This patch introduces 2 new optional attributes to `llvm.load`
and `llvm.store` ops: `volatile` and `nontemporal`. These attributes
are translated into proper LLVM as a `volatile` marker and a metadata node
respectively. They are also helpful with SPIR-V to LLVM dialect conversion
since they are the mappings for `Volatile` and `NonTemporal` Memory Operands.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D84396
This member is already publicly declared on the base class. The
redundant declaration is mangled differently though and in some
unoptimized build it requires a definition to also exist. However we
have a definition for the base ShapedType class, removing the
declaration here will redirect every use to the base class member
instead.
Differential Revision: https://reviews.llvm.org/D84615
Previous changes generalized some of the operands and results. Complete
a larger group of those to simplify progressive lowering. Also update
some of the declarative asm form due to generalization. Tried to keep it
mostly mechanical.
Based on https://reviews.llvm.org/D84439 but less restrictive, else we
don't allow shape_of to be able to produce a ranked output and doesn't
allow for iterative refinement here. We can consider making it more
restrictive later.
The operation `shape.shape_of` now returns an extent tensor `tensor<?xindex>` in
cases when no error are possible. All consuming operation will eventually accept
both, shapes and extent tensors.
Differential Revision: https://reviews.llvm.org/D84160
The operation `shape.const_shape` was used for constants of type shape only.
We can now also use it to create constant extent tensors.
Differential Revision: https://reviews.llvm.org/D84157
This patch introduces branch weights metadata to `llvm.cond_br` op in
LLVM Dialect. It is modelled as optional `ElementsAttr`, for example:
```
llvm.cond_br %cond weights(dense<[1, 3]> : vector<2xi32>), ^bb1, ^bb2
```
When exporting to proper LLVM, this attribute is transformed into metadata
node. The test for metadata creation is added to `../Target/llvmir.mlir`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D83658
This is an update of the documentation for `spv.Variable`.
Removed `bind` and `built_in` that are now used with `spv.globalVariable`
instead.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84196
This revision adds support for much deeper type conversion integration into the conversion process, and enables auto-generating cast operations when necessary. Type conversions are now largely automatically managed by the conversion infra when using a ConversionPattern with a provided TypeConverter. This removes the need for patterns to do type cast wrapping themselves and moves the burden to the infra. This makes it much easier to perform partial lowerings when type conversions are involved, as any lingering type conversions will be automatically resolved/legalized by the conversion infra.
To support this new integration, a few changes have been made to the type materialization API on TypeConverter. Materialization has been split into three separate categories:
* Argument Materialization: This type of materialization is used when converting the type of block arguments when calling `convertRegionTypes`. This is useful for contextually inserting additional conversion operations when converting a block argument type, such as when converting the types of a function signature.
* Source Materialization: This type of materialization is used to convert a legal type of the converter into a non-legal type, generally a source type. This may be called when uses of a non-legal type persist after the conversion process has finished.
* Target Materialization: This type of materialization is used to convert a non-legal, or source, type into a legal, or target, type. This type of materialization is used when applying a pattern on an operation, but the types of the operands have not yet been converted.
Differential Revision: https://reviews.llvm.org/D82831
Loop bound inference is right now very limited as it supports only permutation maps and thus
it is impossible to implement convolution with linalg.generic as it requires more advanced
loop bound inference. This commits solves it for the convolution case.
Depends On D83158
Differential Revision: https://reviews.llvm.org/D83191
This patch refactors a small part of the Super Vectorizer code to
a utility so that it can be used independently from the pass. This
aligns vectorization with other utilities that we already have for loop
transformations, such as fusion, interchange, tiling, etc.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84289
Introduces the scatter/gather operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
The operations can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a gather/scatter. The semantics of the operation
closely correspond to those of the corresponding llvm intrinsics.
Note that the operation allows for a dynamic index vector (which is
important for sparse computations). However, this first reference
lowering implementation "serializes" the address computation when
base + index_vector is converted to a vector of pointers. Exploring
how to use SIMD properly during these step is TBD. More general
memrefs and idiomatic versions of striding are also TBD.
Reviewed By: arpith-jacob
Differential Revision: https://reviews.llvm.org/D84039
The utility function getViewSizes in Linalg has been recently updated to
support a different form of Linalg operations. In doing so, the code looking
like `smallvector.push_back(smallvector[i])` was introduced. Unlike std
vectors, this can lead to undefined behavior if the vector must grow upon
insertion: `smallvector[i]` returns a reference to the element, `push_back`
takes a const reference to the element, and then grows the vector storage
before accessing the referenced value. After the resize, the reference may
become dangling, which leads to undefined behavior detected by ASAN as
use-after-free. Work around the issue by forcing the value to be copied by
putting it into a temporary variable.
This commit adds functionality needed for implementation of convolutions with
linalg.generic op. Since linalg.generic right now expects indexing maps to be
just permutations, offset indexing needed in convolutions is not possible.
Therefore in this commit we address the issue by adding support for symbols inside
indexing maps which enables more advanced indexing. The upcoming commit will
solve the problem of computing loop bounds from such maps.
Differential Revision: https://reviews.llvm.org/D83158
Summary: Vector contract patterns were only parameterized by a `vectorTransformsOptions`. As a result, even if an mlir file was containing several occurrences of `vector.contract`, all of them would be lowered in the same way. More granularity might be required . This Diff adds a `constraint` argument to each of these patterns which allows the user to specify with more precision on which `vector.contract` should each of the lowering apply.
Differential Revision: https://reviews.llvm.org/D83960
When the IfOp returns values, it can easily be obtained from one of the Values.
However, when no values are returned, the information is lost.
This revision lets the caller specify a capture IfOp* to return the produced
IfOp.
Differential Revision: https://reviews.llvm.org/D84025
- This will enable tweaking IR printing options when enabling printing (for ex,
tweak elideLargeElementsAttrs to create smaller IR logs)
Differential Revision: https://reviews.llvm.org/D83930
This also fixes the outdated use of `n_views` in the documentation.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D83795
Some dialects have semantics which is not well represented by common
SSA structures with dominance constraints. This patch allows
operations to declare the 'kind' of their contained regions.
Currently, two kinds are allowed: "SSACFG" and "Graph". The only
difference between them at the moment is that SSACFG regions are
required to have dominance, while Graph regions are not required to
have dominance. The intention is that this Interface would be
generated by ODS for existing operations, although this has not yet
been implemented. Presumably, if someone were interested in code
generation, we might also have a "CFG" dialect, which defines control
flow, but does not require SSA.
The new behavior is mostly identical to the previous behavior, since
registered operations without a RegionKindInterface are assumed to
contain SSACFG regions. However, the behavior has changed for
unregistered operations. Previously, these were checked for
dominance, however the new behavior allows dominance violations, in
order to allow the processing of unregistered dialects with Graph
regions. One implication of this is that regions in unregistered
operations with more than one op are no longer CSE'd (since it
requires dominance info).
I've also reorganized the LangRef documentation to remove assertions
about "sequential execution", "SSA Values", and "Dominance". Instead,
the core IR is simply "ordered" (i.e. totally ordered) and consists of
"Values". I've also clarified some things about how control flow
passes between blocks in an SSACFG region. Control Flow must enter a
region at the entry block and follow terminator operation successors
or be returned to the containing op. Graph regions do not define a
notion of control flow.
see discussion here:
https://llvm.discourse.group/t/rfc-allowing-dialects-to-relax-the-ssa-dominance-condition/833/53
Differential Revision: https://reviews.llvm.org/D80358
- Add function `verifyTypes` that Op's can call to do type checking verification
along the control flow edges described the Op's RegionBranchOpInterface.
- We cannot rely on the verify methods on the OpInterface because the interface
functions assume valid Ops, so they may crash if invoked on unverified Ops.
(For example, scf.for getSuccessorRegions() calls getRegionIterArgs(), which
dereferences getBody() block. If the scf.for is invalid with no body, this
can lead to a segfault). `verifyTypes` can be called post op-verification to
avoid this.
Differential Revision: https://reviews.llvm.org/D82829
This folds shape.broadcast where at least one operand is a scalar to the
other operand.
Also add an assemblyFormat for shape.broadcast and shape.concat.
Differential Revision: https://reviews.llvm.org/D83854
Summary:
This makes sure that their constant arguments are sorted to the back
and hence eases the specification of rewrite patterns.
Differential Revision: https://reviews.llvm.org/D83856
Add `shape.shape_eq` operation to the shape dialect.
The operation allows to test shapes and extent tensors for equality.
Differential Revision: https://reviews.llvm.org/D82528
This adds a `parseOptionalAttribute` method to the OpAsmParser that allows for parsing optional attributes, in a similar fashion to how optional types are parsed. This also enables the use of attribute values as the first element of an assembly format optional group.
Differential Revision: https://reviews.llvm.org/D83712
- Arguments of the first block of a region are considered region arguments.
- Add API on Region class to deal with these arguments directly instead of
using the front() block.
- Changed several instances of existing code that can use this API
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46535
Differential Revision: https://reviews.llvm.org/D83599
This patch introduces lowering of the OpenMP parallel operation to LLVM
IR using the OpenMPIRBuilder.
Functions topologicalSort and connectPhiNodes are generalised so that
they work with operations also. connectPhiNodes is also made static.
Lowering works for a parallel region with multiple blocks. Clauses and
arguments of the OpenMP operation are not handled.
Reviewed By: rriddle, anchu-rajendran
Differential Revision: https://reviews.llvm.org/D81660
Summary: The native alignment may generally not be used when lowering a vector.transfer to the underlying load/store operation. This revision fixes the unmasked load/store alignment to match that of the masked path.
Differential Revision: https://reviews.llvm.org/D83684
Per the Vulkan's SPIR-V environment spec, "for the OpSRem and OpSMod
instructions, if either operand is negative the result is undefined."
So we cannot directly use spv.SRem/spv.SMod if either operand can be
negative. Emulate it via spv.UMod.
Because the emulation uses spv.SNegate, this commit also defines
spv.SNegate.
Differential Revision: https://reviews.llvm.org/D83679