The dsp register class is an alias of the gpr register class, so
we have to define instructions for spilling and reloading.
Reviewers: atanasyan
Differential Revision: https://reviews.llvm.org/D38038
llvm-svn: 314798
This patch enables control flow optimization for
variations of BBIT instruction. In this case
optimization removes unnecessary branch after
BBIT instruction.
Differential Revision: https://reviews.llvm.org/D35359
llvm-svn: 309679
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
Fix a machine verifier issue where a instruction was using a invalid
register. The return pseudo is expanded and has the return address
register added to it. The return register may have been spuriously
mark as killed earlier.
This partially resolves PR/27458
Thanks to Quentin Colombet for reporting the issue!
llvm-svn: 297372
As part of this effort, remove MipsFCmp nodes and use tablegen
patterns rather than custom lowering through C++.
Unexpectedly, this improves codesize for microMIPS as previous floating
point setcc expansions would materialize 0 and 1 into GPRs before using
the relevant mov[tf].[sd] instruction. Now $zero is used directly.
Reviewers: dsanders, vkalintiris, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D23118
llvm-svn: 281022
MIPS64R6 compact branch support. As the MIPS LLVM backend uses distinct
MachineInstrs for certain 32 and 64 bit instructions (e.g. BEQ & BEQ64) that
map to the same instruction, extend compact branch support for the
corresponding 64bit branches.
Reviewers: dsanders
Differential Revision: https://reviews.llvm.org/D20164
llvm-svn: 276739
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
Instead of always using addu to adjust the stack pointer when the
size out is of the range of an addiu instruction, use subu so that
a smaller constant can be generated.
This can give savings of ~3 instructions whenever a function has a
a stack frame whose size is out of range of an addiu instruction.
This change may break some naive stack unwinders.
Partially resolves PR/26291.
Thanks to David Chisnall for reporting the issue.
Reviewers: dsanders, vkalintiris
Differential Review: http://reviews.llvm.org/D21321
llvm-svn: 272666
Summary:
The machine verifier reports 'Explicit operand marked as def' when it is
manually specified even though it agrees with the operand info.
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D21065
llvm-svn: 272646
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Summary:
MIPSR6 introduces a class of branches called compact branches. Unlike the
traditional MIPS branches which have a delay slot, compact branches do not
have a delay slot. The instruction following the compact branch is only
executed if the branch is not taken and must not be a branch.
It works by generating compact branches for MIPS32R6 when the delay slot
filler cannot fill a delay slot. Then, inspecting the generated code for
forbidden slot hazards (a compact branch with an adjacent branch or other
CTI) and inserting nops to clear this hazard.
Patch by Simon Dardis.
Reviewers: vkalintiris, dsanders
Subscribers: MatzeB, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16353
llvm-svn: 263444
Summary: The result register is the second operand as per the other mt* instructions.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D15993
llvm-svn: 257478
Summary:
This patch adds support for using the "interrupt" attribute on Mips
for interrupt handling functions. At this time only mips32r2+ with the
o32 ABI with the static relocation model is supported. Unsupported
configurations will be rejected
Patch by Simon Dardis (+ clang-format & some trivial changes to follow the
LLVM coding standards by me).
Reviewers: mpf, dsanders
Subscribers: dsanders, vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D10768
llvm-svn: 251286
This has been causing the prologue_end to be incorrectly positioned.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D11293
llvm-svn: 246309
Summary:
This patch remaps the assembly idiom 'move' to 'or' instead of 'daddu' or
'addu'. The use of addu/daddu instead of or as move was highlighted as a
performance issue during the analysis of a recent 64bit design. Originally
move was encoded as 'or' by binutils but was changed for the r10k cpu family
due to their pipeline which had 2 arithmetic units and a single logical unit,
and so could issue multiple (d)addu based moves at the same time but only 1
logical move.
This patch preserves the disassembly behaviour so that disassembling a old style
(d)addu move still appears as move, but assembling move always gives an or
Patch by Simon Dardis.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11796
llvm-svn: 244579
Summary:
For example, a common idiom was 'isN64 ? Mips::SP_64 : Mips::SP'. This has
been moved to MipsABIInfo and replaced with 'ABI.GetStackPtr()'.
There are others that should also be moved. This patch sticks to the ones that
are obviously non-functional. The others have minor mistakes that need fixing
at the same time, mostly involving checks for 64-bit GPR's instead of checks
for 64-bit pointers.
Reviewers: tomatabacu
Reviewed By: tomatabacu
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8972
llvm-svn: 235173
filler such as if delay slot filler have to put NOP instruction into the
delay slot of microMIPS BEQ or BNE instruction which uses the register $0,
then instead of emitting NOP this instruction is replaced by the corresponding
microMIPS compact branch instruction, i.e. BEQZC or BNEZC.
Differential Revision: http://reviews.llvm.org/D3566
llvm-svn: 222580
Summary:
This is because the FP64A the hardware will redirect 32-bit reads/writes
from/to odd-numbered registers to the upper 32-bits of the corresponding
even register. In effect, simulating FR=0 mode when FR=0 mode is not
available.
Unfortunately, we have to make the decision to avoid mfc1/mtc1 before
register allocation so we currently do this for even registers too.
FPXX has a similar requirement on 32-bit architectures that lack
mfhc1/mthc1 so this patch also handles the affected moves from the FPU for
FPXX too. Moves to the FPU were supported by an earlier commit.
Differential Revision: http://reviews.llvm.org/D4484
llvm-svn: 212938
Summary:
This is similar to r210771 which did the same thing for MTHC1.
Also corrected MTHC1_D32 and MTHC1_D64 which used AFGR64 and FGR64 on the
wrong definitions.
Differential Revision: http://reviews.llvm.org/D4483
llvm-svn: 212936
enabled and mthc1 and dmtc1 are not available (e.g. on MIPS32r1)
This prevents the upper 32-bits of a double precision value from being moved to
the FPU with mtc1 to an odd-numbered FPU register. This is necessary to ensure
that the code generated executes correctly regardless of the current FPU mode.
MIPS32r2 and above continues to use mtc1/mthc1, while MIPS-IV and above continue
to use dmtc1.
Differential Revision: http://reviews.llvm.org/D4465
llvm-svn: 212930
Summary:
RET, and RET_MM have been replaced by a pseudo named PseudoReturn.
In addition a version with a 64-bit GPR named PseudoReturn64 has been
added.
Instruction selection for a return matches RetRA, which is expanded post
register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter,
this PseudoReturn/PseudoReturn64 are emitted as:
- (JALR64 $zero, $rs) on MIPS64r6
- (JALR $zero, $rs) on MIPS32r6
- (JR_MM $rs) on microMIPS
- (JR $rs) otherwise
On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid
development and review (specifically, to ensure all cases of jr are
updated), these aliases are temporarily named 'r6.jr' instead of 'jr'.
A follow up patch will change them back to the correct mnemonic.
Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect
jump, and removed it from its definition of a call.
Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's
doesn't appear to account for any MIPS64-specifics.
The return instruction created as part of eh_return expansion is now expanded
using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6
('jalr $zero, $rs').
Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in
expandEhReturn().
Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4268
llvm-svn: 212604
Summary:
To make this work for both AFGR64 and FGR64 register sets, I've had to make the
instruction definition consistent with the white lie (that it reads the lower
32-bits of the register) when they are generated by expandBuildPairF64().
Corrected the definition of hasMips32r2() and hasMips64r2() to include
MIPS32r6 and MIPS64r6.
Depends on D3956
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3957
llvm-svn: 210771
Summary:
This is a white lie to workaround a widespread bug in the -mfp64
implementation.
The problem is that none of the 32-bit fpu ops mention the fact that they
clobber the upper 32-bits of the 64-bit FPR. This allows MTHC1 to be
scheduled on the wrong side of most 32-bit FPU ops, particularly MTC1.
Fixing that requires a major overhaul of the FPU implementation which can't
be done right now due to time constraints.
The testcase is SingleSource/Benchmarks/Misc/oourafft.c when given
TARGET_CFLAGS='-mips32r2 mfp64 -mmsa'.
Also correct the comment added in r203464 to indicate that two
instructions were affected.
Reviewers: matheusalmeida, jacksprat
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3029
llvm-svn: 203659
Summary:
This is a white lie to workaround a widespread bug in the -mfp64
implementation.
The problem is that none of the 32-bit fpu ops mention the fact that they
clobber the upper 32-bits of the 64-bit FPR. This allows MFHC1 to be
scheduled on the wrong side of most 32-bit FPU ops. Fixing that requires a
major overhaul of the FPU implementation which can't be done right now due to
time constraints.
MFHC1 is one of two affected instructions. These instructions are the only
FPU instructions that don't read or write the lower 32-bits. We therefore
pretend that it reads the bottom 32-bits to artificially create a dependency and
prevent the scheduler changing the behaviour of the code.
The other instruction is MTHC1 which will be fixed once I've have found a failing
test case for it.
The testcase is test-suite/SingleSource/UnitTests/Vector/simple.c when
given TARGET_CFLAGS="-mips32r2 -mfp64 -mmsa".
Reviewers: jacksprat, matheusalmeida
Reviewed By: jacksprat
Differential Revision: http://llvm-reviews.chandlerc.com/D2966
llvm-svn: 203464
Fixed an inappropriate use of BuildPairF64 when compiling for MIPS32 with FP64
which resulted in an impossible constraint on the register allocation. It now
uses BuildPairF64_64.
llvm-svn: 195007
accumulator instead of its sub-registers, $hi and $lo.
We need this change to prevent a mflo following a mtlo from reading an
unpredictable/undefined value, as shown in the following example:
mult $6, $7 // result of $6 * $7 is written to $lo and $hi.
mflo $2 // read lower 32-bit result from $lo.
mtlo $4 // write to $lo. the content of $hi becomes unpredictable.
mfhi $3 // read higher 32-bit from $hi, which has an unpredictable value.
I don't have a test case for this change that reliably reproduces the problem.
llvm-svn: 192119
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
llvm-svn: 190235
The MSA control registers have been added as reserved registers,
and are only used via ISD::Copy(To|From)Reg. The intrinsics are lowered
into these nodes.
llvm-svn: 189468