In a function, s5 is used as the frame base SGPR. If a function
is calling another function, during the call sequence
it is copied to a preserved SGPR and restored.
Before it was possible for the scheduler to move stack operations
before the restore of s5, since there's nothing to associate
a frame index access with the restore.
Add an implicit use of s5 to the adjcallstack pseudo which ends
the call sequence to preven this from happening. I'm not 100%
satisfied with this solution, but I'm not sure what else would be
better.
llvm-svn: 328650
%tmp = bitcast i32* %arg to i8*
%tmp1 = getelementptr inbounds i8, i8* %tmp, i32 0
- %tmp2 = load i8, i8* %tmp, align 1
+ %tmp2 = load i8, i8* %tmp1, align 1
This doesn't change the semantics of the tests but makes use of %tmp1 which was originally intended.
llvm-svn: 328642
Summary:
This is a canonical way to teach objdump to print the target
symbols for branches when disassembling AArch64 code.
Reviewers: evandro, t.p.northover, espindola
Reviewed By: t.p.northover
Differential Revision: https://reviews.llvm.org/D44851
llvm-svn: 328638
On Hexagon "x = y" is a syntax used in most instructions, and is not
treated as a directive.
Differential Revision: https://reviews.llvm.org/D44256
llvm-svn: 328635
We were incorrectly initializing the array of used registers in method checkRAT.
As a consequence, the number of register file stalls was misreported.
Added a test to cover this case.
llvm-svn: 328629
As a follow-up to r328480, this updates the logic for the decreasing
safety checks in a similar manner:
- CanBeMax is replaced by CannotBeMaxInLoop which queries
isLoopEntryGuardedByCond on the maximum value.
- SumCanReachMin is replaced by isSafeDecreasingBound which includes
some logic from parseLoopStructure and, again, has been updated to
use isLoopEntryGuardedByCond on the given bounds.
Differential Revision: https://reviews.llvm.org/D44776
llvm-svn: 328613
Currently, `getExact` fails if it sees two exit counts in different blocks. There is
no solid reason to do so, given that we only calculate exact non-taken count
for exiting blocks that dominate latch. Using this fact, we can simply take min
out of all exits of all blocks to get the exact taken count.
This patch makes the calculation more optimistic with enforcing our assumption
with asserts. It allows us to calculate exact backedge taken count in trivial loops
like
for (int i = 0; i < 100; i++) {
if (i > 50) break;
. . .
}
Differential Revision: https://reviews.llvm.org/D44676
Reviewed By: fhahn
llvm-svn: 328611
This patch teaches `computeConstantDifference` handle calculation of constant
difference between `(X + C1)` and `(X + C2)` which is `(C2 - C1)`.
Differential Revision: https://reviews.llvm.org/D43759
Reviewed By: anna
llvm-svn: 328609
Summary:
This reverts commit r328596.
Checking if the arguments are strings before testing if they contain "/dev/null".
Reviewers: rnk
Reviewed By: rnk
Subscribers: delcypher, llvm-commits
Differential Revision: https://reviews.llvm.org/D44914
llvm-svn: 328603
Currently CRC32 instructions use the WriteFAdd class, this patch splits them off into their own, at the moment it is still mostly just a duplicate of WriteFAdd but it can now be tweaked on a target by target basis.
Differential Revision: https://reviews.llvm.org/D44647
llvm-svn: 328582
Goma[1] is a distributed build system similar to distcc and icecc
primarily used to compile Chromium. The client is open source, and
hopefully soon the server will be as well. The intended usage model is
similar to most distributed build systems: prefix gomacc onto your
compiler command line, and it transparently distributes compilation.
The go lit config wants to determine the host compiler binary, so it
needs some extra logic to avoid looking at these prefixes.
[1] https://chromium.googlesource.com/infra/goma/client/
llvm-svn: 328580
MemorySSAUpdater::getPreviousDefRecursive is a recursive algorithm, for
each block, it computes the previous definition for each predecessor,
then takes those definitions and combines them. But currently it doesn't
remember results which it already computed; this means it can visit the
same block multiple times, which adds up to exponential time overall.
To fix this, this patch adds a cache. If we computed the result for a
block already, we don't need to visit it again because we'll come up
with the same result. Well, unless we RAUW a MemoryPHI; in that case,
the TrackingVH will be updated automatically.
This matches the original source paper for this algorithm.
The testcase isn't really a test for the bug, but it adds coverage for
the case where tryRemoveTrivialPhi erases an existing PHI node. (It's
hard to write a good regression test for a performance issue.)
Differential Revision: https://reviews.llvm.org/D44715
llvm-svn: 328577
Summary:
Re-lands r328386 and r328443, reverting r328482.
Incorporates fixes from @mstorsjo in D44876 (thanks!) so that small
parameters in i8 and i16 do not end up in the SysV register parameters
(EDI, ESI, etc).
I added tests for how we receive small parameters, since that is the
important part. It's always safe to store more bytes than will be read,
but the assumptions you make when loading them are what really matter.
I also tested this by self-hosting clang and it passed tests on win64.
Reviewers: mstorsjo, hans
Subscribers: hiraditya, mstorsjo, llvm-commits
Differential Revision: https://reviews.llvm.org/D44900
llvm-svn: 328570
Give the bit count instructions their own scheduler classes instead of forcing them into existing classes.
These were mostly overridden anyway, but I had to add in costs from Agner for silvermont and znver1 and the Fam16h SoG for btver2 (Jaguar).
Differential Revision: https://reviews.llvm.org/D44879
llvm-svn: 328566
Legalize and emit code for quad-precision floating point operation xscvdpqp
and add option to guard the quad precision operation support.
Differential Revision: https://reviews.llvm.org/D44746
llvm-svn: 328558
A new function getOpcodeForSpill should now be the only place to get
the opcode for a given spilled register.
Differential Revision: https://reviews.llvm.org/D43086
llvm-svn: 328556
Summary:
llvm-objdump now disassembles unrecognised opcodes as data, using
the .long directive. We treat unrecognised opcodes as being 32 bit
values, so move along 4 bytes rather than the single byte which
previously resulted in a cascade of bogus disassembly following an
unrecognised opcode.
While no solution can always disassemble code that contains
embedded data correctly this provides a significant improvement.
The disassembler will now cope with an arbitrary length section
as it no longer truncates it to a multiple of 4 bytes, and will
use the .byte directive for trailing bytes.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D44685
llvm-svn: 328553
The pipeliner is not adding a dependence edge for a loop carried
dependence, and ends up scheduling a load from iteration n prior
to an aliased store in iteration n-1.
The code that adds the loop carried dependences in the pipeliner
doesn't check if the memory objects for loads and stores are
"identified" (i.e., distinct) objects. If they are not, then the
code that adds the dependences needs to be conservative. The
objects can be used to check dependences only when they are
distinct objects.
The code that checks for loop carried dependences has been updated
to classify loads and stores that are not identified as "unknown"
values. A store with an "unknown" value can potentially create
a loop carried dependence with any pending load.
Patch by Brendon Cahoon.
llvm-svn: 328547
The patch contains severals changes needed to pipeline an example
that was transformed so that a Phi with a subreg is converted to
copies.
The pipeliner wasn't working for a couple of reasons.
- The RecMII was 3 instead of 2 due to the extra copies.
- Copy instructions contained a latency of 1.
- The node order algorithm was not choosing the best "bottom"
node, which caused an instruction to be scheduled that had a
predecessor and successor already scheduled.
- Updated the Hexagon Machine Scheduler to check if the node is
latency bound when adding the cost for a 0-latency dependence.
The RecMII was 3 because the computation looks at the number of
nodes in the recurrence. The extra copy is an extra node but
it shouldn't increase the latency. The new RecMII computation
looks at the latency of the instructions in the recurrence. We
changed the latency of the dependence of a copy to 0. The latency
computation for the copy also checks the use of the copy (similar
to a reg_sequence).
The node order algorithm was not choosing the last instruction
in the recurrence for a bottom up traversal. This was when the
last instruction is a copy. A check was added when choosing the
instruction to check for NodeNum if the maxASAP is the same. This
means that the scheduler will not end up with another node in
the recurrence that has both a predecessor and successor already
scheduled.
The cost computation in Hexagon Machine Scheduler adds cost when
an instruction can be packetized with a zero-latency instruction.
We should only do this if the schedule is latency bound.
Patch by Brendon Cahoon.
llvm-svn: 328542
The pipeliner is asserting because the serialization step that
occurs at the end is deleting an instruction. The assert
occurs later on because there is a use without a definition.
The problem occurs when an instruction defines a value used
by a REQ_SEQUENCE and that value is used by a COPY instruction.
The latencies between these instructions are zero, so they are
put in to the same packet. The serialization code is unable to
handle this correctly, and ends up putting the REG_SEQUENCE
before its definition.
There is special code in the serialization step that attempts
to handle zero-cost instructions (phis, copy, reg_sequence)
differently than regular instructions. Unfortunately, this means
the order does not come out correct.
This patch simplifies the code by changing the seperate steps for
handling zero-cost and regular instructions. Only phis are
handled separate now, since they should occurs first. Then, this
patch adds checks to make use the MoveUse is set to the smallest
value if there are multiple uses in a cycle.
Patch by Brendon Cahoon.
llvm-svn: 328540
This change brings performance of zlib up by 10%. The example below is from a
hot loop in longest_match() from zlib.
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 %idx.ext1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 -1
In this example %idx.ext1 is a loop invariant. It will be moved above the use of
loop induction variable %idx.ext such that it can be hoisted out of the loop by
LICM. The operands that have dependences carried by the loop will be sinked down
in the GEP chain. This patch will produce the following output:
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext1
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 -1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 %idx.ext
llvm-svn: 328539
The code in orderDepdences that looks at the order dependences between
instructions was processing all the successor and predecessor order
dependences. However, we really only want to check for an order dependence
for instructions scheduled in the same cycle.
Also, fixed how the pipeliner handles output dependences. An output
dependence is also a potential loop carried dependence. The pipeliner
didn't handle this case properly so an invalid schedule could be created
that allowed an output dependence to be scheduled in the next iteration
at the same cycle.
Patch by Brendon Cahoon.
llvm-svn: 328516
When the definition of a phi is used by a phi in the next iteration,
the pipeliner was assuming that the definition is processed first.
Because of the assumption, an incorrect phi name was used. This patch
has a check to see if the phi definition has been processed already.
Patch by Brendon Cahoon.
llvm-svn: 328510
The pipeliner needs to be conservative when updating the memoperands
of instructions in the epilog. Previously, the pipeliner was changing
the offset of the memoperand based upon the scheduling stage. However,
that is incorrect when control flow branches around the kernel code.
The bug enabled a load and store to the same stack offset to be swapped.
This patch fixes the bug by updating the size of the memoperands to be
UINT_MAX. This conservative value means that dependences will be created
between other loads and stores.
Patch by Brendon Cahoon.
llvm-svn: 328508
This replaces a large chunk of code that was looking for compound
patterns that include these sub-patterns. Existing tests ensure that
all of the previous examples are still folded as expected.
We still need to loosen the FMF check.
llvm-svn: 328502
The goal of this patch is to address most of PR36874. To fully fix PR36874 we
need to split the "InstructionInfo" view from the "SummaryView". That would make
easy to check the latency and rthroughput as well.
The patch reuses all the logic from ResourcePressureView to print out the
"instruction tables".
We have an entry for every instruction in the input sequence. Each entry reports
the theoretical resource pressure distribution. Resource pressure is uniformly
distributed across all the processor resource units of a group.
At the moment, the backend pipeline is not configurable, so the only way to fix
this is by creating a different driver that simply sends instruction events to
the resource pressure view. That means, we don't use the Backend interface.
Instead, it is simpler to just have a different code-path for when flag
-instruction-tables is specified.
Once Clement addresses bug 36663, then we can port the "instruction tables"
logic into a stage of our configurable pipeline.
Updated the BtVer2 test cases (thanks Simon for the help). Now we pass flag
-instruction-tables to each modified test.
Differential Revision: https://reviews.llvm.org/D44839
llvm-svn: 328487
Current logic of loop SCEV invalidation in Loop Unroller implicitly relies on
fact that exit count of outer loops cannot rely on exiting blocks of
inner loops, which is true in current implementation of backedge taken count
calculation but is wrong in general. As result, when we only forget the loop that
we have just unrolled, we may still have cached data for its outer loops (in particular,
exit counts) which keeps references on blocks of inner loop that could have been
changed or even deleted.
The attached test demonstrates a situaton when after unrolling of innermost loop
the outermost loop contains a dangling pointer on non-existant block. The problem
shows up when we apply patch https://reviews.llvm.org/D44677 that makes SCEV
smarter about exit count calculation. I am not sure if the bug exists without this patch,
it appears that now it is accidentally correct just because in practice exact backedge
taken count for outer loops with complex control flow inside is never calculated.
But when SCEV learns to do so, this problem shows up.
This patch replaces existing logic of SCEV loop invalidation with a correct one, which
happens to be invalidation of outermost loop (which also leads to invalidation of all
loops inside of it). It is the only way to ensure that no outer loop keeps dangling pointers
on removed blocks, or just outdated information that has changed after unrolling.
Differential Revision: https://reviews.llvm.org/D44818
Reviewed By: samparker
llvm-svn: 328483
This broke Chromium (see crbug.com/825748). It looks like mstorsjo's follow-up
patch at D44876 fixes this, but let's revert back to green for now until that's
ready to land.
(Also reverts r328443.)
> Both GCC and MSVC only look at the low byte of a boolean when it is
> passed.
llvm-svn: 328482
CanBeMin is currently used which will report true for any unknown
values, but often a check is performed outside the loop which covers
this situation:
for (int i = 0; i < N; ++i)
...
if (N > 0)
for (int i = 0; i < N; ++i)
...
So I've add 'LoopGuardedAgainstMin' which reports whether N is
greater than the minimum value which then allows loop with a variable
loop count to be optimised. I've also moved the increasing bound
checking into its own function and replaced SumCanReachMax is another
isLoopEntryGuardedByCond function.
llvm-svn: 328480
Add fdiv costs for Goldmont using table 16-17 of the Intel Optimization Manual. Also add overrides for FSQRT for Goldmont and Silvermont.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44644
llvm-svn: 328451
We have thorough coverage of predicates and scalar types,
so we just need a sampling of vector tests to show that
things are working or not with vectors types.
llvm-svn: 328449
Summary:
LLVM defaults to the newer .init_array/.fini_array scheme for static
constructors rather than the less desirable .ctors/.dtors (the UseCtors
flag defaults to false). This wasn't being respected in the RISC-V
backend because it fails to call TargetLoweringObjectFileELF::InitializeELF with the the appropriate
flag for UseInitArray.
This patch fixes this by implementing RISCVELFTargetObjectFile and overriding its Initialize method to call
InitializeELF(TM.Options.UseInitArray).
Reviewers: asb, apazos
Reviewed By: asb
Subscribers: mgorny, rbar, johnrusso, simoncook, jordy.potman.lists, sabuasal, niosHD, kito-cheng, shiva0217, llvm-commits
Differential Revision: https://reviews.llvm.org/D44750
llvm-svn: 328433
These nodes only use the lower 32 bits of their inputs so we can use SimplifyDemandedBits to simplify them.
Differential Revision: https://reviews.llvm.org/D44375
llvm-svn: 328405
offsets for code models other than small/medium. For JIT application,
memory layout is less controlled and can result in truncations
otherwise.
Patch based on one by Olexa Bilaniuk!
llvm-svn: 328400
Summary:
This was motivated by absence of PrunEH functionality in new PM.
It was decided that a proper way to do PruneEH is to add NoUnwind inference
into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top.
This change generalizes attribute handling implemented for (a removal of)
Convergent attribute, by introducing a generic builder-like class
AttributeInferer
It registers all the attribute inference requests, storing per-attribute
predicates into a vector, and then goes through an SCC Node, scanning all
the instructions for not breaking attribute assumptions.
The main idea is that as soon all the instructions from all the functions
of SCC Node conform to attribute assumptions then we are free to infer
the attribute as set for all the functions of SCC Node.
It handles two distinct cases of attributes:
- those that might break due to derefinement of the function code
for these attributes we are allowed to apply inference only if all the
functions are "exact definitions". Example - NoUnwind.
- those that do not care about derefinement
for these attributes we are allowed to apply inference as soon as we see
any function definition. Example - removal of Convergent attribute.
Also in this commit:
* Converted all the FunctionAttrs tests to use FileCheck and added new-PM
invocations to them
* FunctionAttrs/convergent.ll test demonstrates a difference in behavior between
new and old PM implementations. Marked with FIXME.
* PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg
combo as intended
* some of "other" tests were updated since function-attrs now infers 'nounwind'
even for old PM pipeline
* -disable-nounwind-inference hidden option added as a possible workaround for a supposedly
rare case when nounwind being inferred by default presents a problem
Reviewers: chandlerc, jlebar
Reviewed By: jlebar
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D44415
llvm-svn: 328377
Add two additional implicit arguments for OpenCL for the AMDGPU target using the AMDHSA runtime to support device enqueue.
Differential Revision: https://reviews.llvm.org/D44697
llvm-svn: 328351
- Remove use of the opencl and amdopencl environment member of the target triple for the AMDGPU target.
- Use function attribute to communicate to the AMDGPU backend to add implicit arguments for OpenCL kernels for the AMDHSA OS.
Differential Revision: https://reviews.llvm.org/D43736
llvm-svn: 328349
HexagonGenMux would collapse pairs of predicated transfers if it assumed
that the predicated .new forms cannot be created. Turns out that generating
mux is preferable in almost all cases.
Introduce an option -hexagon-gen-mux-threshold that controls the minimum
distance between the instruction defining the predicate and the later of
the two transfers. If the distance is closer than the threshold, mux will
not be generated. Set the threshold to 0 by default.
llvm-svn: 328346
Summary:
Porting HWASan to Linux x86-64, first of the three patches, LLVM part.
The approach is similar to ARM case, trap signal is used to communicate
memory tag check failure. int3 instruction is used to generate a signal,
access parameters are stored in nop [eax + offset] instruction immediately
following the int3 one.
One notable difference is that x86-64 has to untag the pointer before use
due to the lack of feature comparable to ARM's TBI (Top Byte Ignore).
Reviewers: eugenis
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D44699
llvm-svn: 328342
This patch fixes PR36658, "Constant pool entry out of range!" in Thumb1 mode.
In ARMConstantIslands::optimizeThumb2JumpTables() in Thumb1 mode,
adjustBBOffsetsAfter() is not calculating postOffset correctly by
properly accounting for the padding that is required for the constant pool
that immediately follows the jump table branch instruction.
Reviewers: t.p.northover, eli.friedman
Reviewed By: t.p.northover
Subscribers: chrib, tstellar, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D44709
llvm-svn: 328341
This patch adds functions to allow MachineLICM to hoist invariant stores.
Currently, MachineLICM does not hoist any store instructions, however
when storing the same value to a constant spot on the stack, the store
instruction should be considered invariant and be hoisted. The function
isInvariantStore iterates each operand of the store instruction and checks
that each register operand satisfies isCallerPreservedPhysReg. The store
may be fed by a copy, which is hoisted by isCopyFeedingInvariantStore.
This patch also adds the PowerPC changes needed to consider the stack
register as caller preserved.
Differential Revision: https://reviews.llvm.org/D40196
llvm-svn: 328326
Loads and stores can only shift the offset register by the size of the value
being loaded, but currently the DAGCombiner will reduce the width of the load
if it's followed by a trunc making it impossible to later combine the shift.
Solve this by implementing shouldReduceLoadWidth for the AArch64 backend and
make it prevent the width reduction if this is what would happen, though do
allow it if reducing the load width will let us eliminate a later sign or zero
extend.
Differential Revision: https://reviews.llvm.org/D44794
llvm-svn: 328321
This was due to a misunderstanding over what llvm calls a micro-op (retirement unit) is actually called a macro-op on the AMD/Jaguar target. Folded loads don't affect num macro ops.
llvm-svn: 328320
When building the SLP tree, we look for reuse among the vectorized tree
entries. However, each gather sequence is represented by a unique tree entry,
even though the sequence may be identical to another one. This means, for
example, that a gather sequence with two uses will be counted twice when
computing the cost of the tree. We should only count the cost of the definition
of a gather sequence rather than its uses. During code generation, the
redundant gather sequences are emitted, but we optimize them away with CSE. So
it looks like this problem just affects the cost model.
Differential Revision: https://reviews.llvm.org/D44742
llvm-svn: 328316
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section+offset`. Patch adds initial support
for this.
Reviewers: echristo, probinson, jlebar
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43943
llvm-svn: 328314
When targeting execute-only and fp-armv8, float constants in a compare
resulted in instruction selection failures. This is now fixed by using
vmov.f32 where possible, otherwise the floating point constant is
lowered into a integer constant that is moved into a floating point
register.
This patch also restores using fpcmp with immediate 0 under fp-armv8.
Change-Id: Ie87229706f4ed879a0c0cf66631b6047ed6c6443
llvm-svn: 328313
This was being masked because GISel is enabled by default for -O0 and
the abort was disabled. Modified test to explicitly enable abort.
llvm-svn: 328311
For comparisons with parameters, we can use the ParamState lattice
elements which also provide constant range information. This improves
the code for PR33253 further and gets us closer to use
ValueLatticeElement for all values.
Also, as we are using the range information in the solver directly, we
do not need tryToReplaceWithConstantRange afterwards anymore.
Reviewers: dberlin, mssimpso, davide, efriedma
Reviewed By: mssimpso
Differential Revision: https://reviews.llvm.org/D43762
llvm-svn: 328307
Loop peeling also has an impact on the induction variables, so we should
benefit from induction variable simplification after peeling too.
Reviewers: sanjoy, bogner, mzolotukhin, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D43878
llvm-svn: 328301
The VMOVMSKBrr was in a separate InstRW with a lower latency, but I assume they should be the same and the higher latency matches Agners table so I'm going with that.
llvm-svn: 328291
cases when printing symbols. As an improvement to:
r305733 - Change llvm-nm for Mach-O files to use dyld info in some cases when printing symbols
it could be made a bit better if it also read the function starts and faked
up nlist entries to those address not already faked up by the other
dyld info. This would help with stripped static functions.
rdar://38761029
llvm-svn: 328274
Summary:
Revert r325687 workaround for PR36032 since
a fix was committed in r326154.
Reviewers: sbaranga
Differential Revision: http://reviews.llvm.org/D44768
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 328257
This makes the Y position consistent with other instructions.
This should have been NFC, but while refactoring the multiclass I noticed that VROUNDPD memory forms were using the register itinerary.
llvm-svn: 328254
In our real world application, we found the following optimization is missed in DAGCombiner
(zext (and/or/xor (shl/shr (load x), cst), cst)) -> (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
If the user of original zext is an add, it may enable further lea optimization on x86.
This patch add a new function CombineZExtLogicopShiftLoad to do this optimization.
Differential Revision: https://reviews.llvm.org/D44402
llvm-svn: 328252
Summary:
This reverts commit 364eb09576a7667bc6d3ff80c52a83014ccac976 and separates out
the portion that was fixing binary reader error propagation - turns out, there
are production cases where that causes a regression.
Will re-introduce the error propagation fix separately.
The fix to the text reader error propagation is still "in".
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44807
llvm-svn: 328244
Summary:
This pass sinks COPY instructions into a successor block, if the COPY is not
used in the current block and the COPY is live-in to a single successor
(i.e., doesn't require the COPY to be duplicated). This avoids executing the
the copy on paths where their results aren't needed. This also exposes
additional opportunites for dead copy elimination and shrink wrapping.
These copies were either not handled by or are inserted after the MachineSink
pass. As an example of the former case, the MachineSink pass cannot sink
COPY instructions with allocatable source registers; for AArch64 these type
of copy instructions are frequently used to move function parameters (PhyReg)
into virtual registers in the entry block..
For the machine IR below, this pass will sink %w19 in the entry into its
successor (%bb.1) because %w19 is only live-in in %bb.1.
```
%bb.0:
%wzr = SUBSWri %w1, 1
%w19 = COPY %w0
Bcc 11, %bb.2
%bb.1:
Live Ins: %w19
BL @fun
%w0 = ADDWrr %w0, %w19
RET %w0
%bb.2:
%w0 = COPY %wzr
RET %w0
```
As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
able to see %bb.0 as a candidate.
With this change I observed 12% more shrink-wrapping candidate and 13% more dead copies deleted in spec2000/2006/2017 on AArch64.
Reviewers: qcolombet, MatzeB, thegameg, mcrosier, gberry, hfinkel, john.brawn, twoh, RKSimon, sebpop, kparzysz
Reviewed By: sebpop
Subscribers: evandro, sebpop, sfertile, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41463
llvm-svn: 328237
As in SystemZ backend, correctly propagate node ids when inserting new
unselected nodes into the DAG during instruction Seleciton for X86
target.
Fixes PR36865.
Reviewers: jyknight, craig.topper
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D44797
llvm-svn: 328233
Summary:
When building with libFuzzer, converting control flow to selects or
obscuring the original operands of CMPs reduces the effectiveness of
libFuzzer's heuristics.
This patch provides an attribute to disable or modify certain optimizations
for optimal fuzzing signal.
Provides a less aggressive alternative to https://reviews.llvm.org/D44057.
Reviewers: vitalybuka, davide, arsenm, hfinkel
Reviewed By: vitalybuka
Subscribers: junbuml, mehdi_amini, wdng, javed.absar, hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44232
llvm-svn: 328214
Summary:
LoopPredication is not profitable when the loop is known to always exit
through some block other than the latch block.
A coarse grained latch check can cause loop predication to predicate the
loop, and unconditionally deoptimize.
However, without predicating the loop, the guard may never fail within the
loop during the dynamic execution because the non-latch loop termination
condition exits the loop before the latch condition causes the loop to
exit.
We teach LP about this using BranchProfileInfo pass.
Reviewers: apilipenko, skatkov, mkazantsev, reames
Reviewed by: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44667
llvm-svn: 328210
We were effectively overriding an explicit '.file' directive with info
for the assembler source. That shouldn't happen.
Fixes PR36636, really, even for .s files emitted by Clang.
Differential Revision: https://reviews.llvm.org/D44265
llvm-svn: 328208
Summary:
This commit adds checks of the abbreviation table in a DWARF v5 Name
Index. The most interesting/useful check is the one which checks that
each index attributes is encoded using the correct form class, but it
also checks for the more obvious errors like unknown
forms/tags/attributes and duplicated attributes.
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44736
llvm-svn: 328202
This is needed for the upcoming implementation of the
new 8x32x16 and 32x8x16 variants of WMMA instructions
introduced in CUDA 9.1.
Differential Revision: https://reviews.llvm.org/D44719
llvm-svn: 328158
This is mostly just plumbing to get a DWARFDataExtractor where we
compute abbr_offset so we can use getRelocatedValue.
This is part of PR36793.
llvm-svn: 328154
There are at least 3 problems:
1. We're distributing across large patterns, but fail to do that for the minimal patterns.
2. We're not checking uses, so we may create more instructions than we eliminate.
3. We should be able to do these transforms with less than full 'fast' fmuls.
llvm-svn: 328152
This diff adds support for SHT_GROUP sections to llvm-objcopy.
Some sections are interrelated and comprise a group.
For example, a definition of an inline function might require,
in addition to the section containing its instructions,
a read-only data section containing literals referenced inside the function.
A section of the type SHT_GROUP contains the indices of the group members,
therefore, it needs to be updated whenever the indices change.
Similarly, the fields sh_link, sh_info should be recalculated as well.
[Resubmit r328012 with the proper handling of endianness]
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D43996
llvm-svn: 328143
Summary:
External functions appearing as indirect call targets could not be
found in the SymTab, and the value:counter record was represented,
in the text format, using an empty string for the name. This would
then cause a silent parsing error when reading.
This CL:
- adds explicit support for such functions
- fixes the places where we would not propagate errors when reading
- addresses a performance issue due to eager resorting of the SymTab.
Reviewers: xur, eraman, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44717
llvm-svn: 328132
With this patch, the "instruction dispatched" event now provides information
related to the number of microarchitectural registers used in each register
file. Similarly, the "instruction retired" event is now able to tell how may
registers are freed in each register file.
Currently, the BackendStatistics view is the only consumer of register
usage/pressure information. BackendStatistics uses that info to print out a few
general statistics (i.e. max number of mappings used; total mapping created).
Before this patch, the BackendStatistics was forced to query the Backend to
obtain the register pressure information.
This helps removes that dependency. Now views are completely independent from
the Backend. As a consequence, it should be easier to address PR36663 and
further modularize the pipeline.
Added a couple of test cases in the BtVer2 specific directory.
llvm-svn: 328129
Summary:
Instantiating def's and defm's needs to perform the following steps:
- for defm's, clone multiclass def prototypes and subsitute template args
- for def's and defm's, add subclass definitions, substituting template
args
- clone the record based on foreach loops and substitute loop iteration
variables
- override record variables based on the global 'let' stack
- resolve the record name (this should be simple, but unfortunately it's
not due to existing .td files relying on rather silly implementation
details)
- for def(m)s in multiclasses, add the unresolved record as a multiclass
prototype
- for top-level def(m)s, resolve all internal variable references and add
them to the record keeper and any active defsets
This change streamlines how we go through these steps, by having both
def's and defm's feed into a single addDef() method that handles foreach,
final resolve, and routing the record to the right place.
This happens to make foreach inside of multiclasses work, as the new
test case demonstrates. Previously, foreach inside multiclasses was not
forbidden by the parser, but it was de facto broken.
Another side effect is that the order of "instantiated from" notes in error
messages is reversed, as the modified test case shows. This is arguably
clearer, since the initial error message ends up pointing directly to
whatever triggered the error, and subsequent notes will point to increasingly
outer layers of multiclasses. This is consistent with how C++ compilers
report nested #includes and nested template instantiations.
Change-Id: Ica146d0db2bc133dd7ed88054371becf24320447
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D44478
llvm-svn: 328117
The pipeliner needs to remove instructions from the SlotIndexes
structure when they are deleted. Otherwise, the SlotIndexes map
has stale data, and an assert will occur when adding new
instructions.
This patch also changes the pipeliner to make the back-edge of
a loop carried dependence 1 cycle. The 1 cycle latency is added
to the anti-dependence that represents the back-edge. This
changes eliminates a couple of hacks added to the pipeliner to
handle the latency of the back-edge. It is needed to correctly
pipeline the test case for the sub-register elimination pass.
llvm-svn: 328113
This patch also includes extensive tests targeted at select and br+fcmp IR
inputs. A sequence of br+fcmp required support for FPR32 registers to be added
to RISCVInstrInfo::storeRegToStackSlot and
RISCVInstrInfo::loadRegFromStackSlot.
llvm-svn: 328104
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
MemCpyOpt pass to cease using:
1) The old getAlignment() API of MemoryIntrinsic in favour of getting source & dest specific
alignments through the new API.
2) The old IRBuilder CreateMemCpy/CreateMemMove single-alignment APIs in favour of the new
API that allows setting source and destination alignments independently.
We also add a few tests to fill gaps in the testing of this pass.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816, rL327398, rL327421 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 328097
Summary:
If the operands of a udiv/urem can be proved to fit within a smaller
power-of-two-sized type, reduce the width of the udiv/urem.
Backed out for causing performance regressions. Re-landing
because we've determined that these regressions were noise.
Original Differential Revision: https://reviews.llvm.org/D44102
llvm-svn: 328096
Summary:
When building the selection DAG we sometimes need to postpone
the handling of a dbg.value until the value it should refer to
is created. This is done by using the DanglingDebugInfoMap.
In the past this map has been limited to hold one dangling
dbg.value per value. This patch removes that restriction.
Reviewers: aprantl, rnk, probinson, vsk
Reviewed By: aprantl
Subscribers: Ka-Ka, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44610
llvm-svn: 328084
Also restrict to port 0 and 1 for SkylakeClient. It looks like the scheduler models don't account for client not having a full vector ALU on port 5 like server.
Fixes PR36808.
llvm-svn: 328061
Most basic possible test for the logic used by LICM.
Also contains a speculative build fix for compiles which complain about a definition of a stuct K; followed by a declaration as class K;
llvm-svn: 328058
The default thread model for wasm is single, and in this mode thread-local
global variables can be lowered identically to non-thread-local variables.
Differential Revision: https://reviews.llvm.org/D44703
llvm-svn: 328049
The inline assembly generated for the ARC autorelease elision marker
must have a funclet token if it's emitted inside a funclet, otherwise
the inline assembly (and all subsequent code in the funclet) will be
marked unreachable by WinEHPrepare.
Note that this only applies for the non-O0 case, since at O0, clang
emits the autorelease elision marker itself rather than deferring to the
backend. The fix for clang is handled in a separate change.
Differential Revision: https://reviews.llvm.org/D44641
llvm-svn: 328042
Mingw uses the same stack protector functions as GCC provides
on other platforms as well.
Patch by Valentin Churavy!
Differential Revision: https://reviews.llvm.org/D27296
llvm-svn: 328039
term sections from .o files to look to see if the pointers have a relocation
entry and if so print the symbol name from the relocation entry. If not fall
back to the existing code and use the pointer value to look up that value
in the symbol table.
rdar://38337506
llvm-svn: 328037
It uses the MC framework and the tablegen matcher to do the
heavy lifting. Can handle both explicit and implicit locals
(-disable-wasm-explicit-locals). Comes with a small regression
test.
This is a first basic implementation that can parse most llvm .s
output and round-trips most instructions succesfully, but in order
to keep the commit small, does not address all issues.
There are a fair number of mismatches between what MC / assembly
matcher think a "CPU" should look like and what WASM provides,
some already have workarounds in this commit (e.g. the way it
deals with register operands) and some that require further work.
Some of that further work may involve changing what the
Disassembler outputs (and what s2wasm parses), so are probably
best left to followups.
Some known things missing:
- Many directives are ignored and not emitted.
- Vararg calls are parsed but extra args not emitted.
- Loop signatures are likely incorrect.
- $drop= is not emitted.
- Disassembler does not output SIMD types correctly, so assembler
can't test them.
Patch by Wouter van Oortmerssen
Differential Revision: https://reviews.llvm.org/D44329
llvm-svn: 328028
I'm not entirely sure these hacks are still needed. If you remove the hacks completely, the name of the library call that gets generated doesn't match the grep the test previously had. So the test wasn't really checking anything.
If the hack is still needed it belongs in PPC specific code. I believe the FP_TO_SINT code here is the only place in the tree where a FP_ROUND_INREG node is created today. And I don't think its even being used correctly because the legalization returned a BUILD_PAIR with the same value twice. That doesn't seem right to me. By moving the code entirely to PPC we can avoid creating the FP_ROUND_INREG at all.
I replaced the grep in the existing test with full checks generated by hacking update_llc_test_check.py to support ppc32 just long enough to generate it.
Differential Revision: https://reviews.llvm.org/D44061
llvm-svn: 328017
Registers E[A-D]X, E[SD]I, E[BS]P, and EIP have 16-bit subregisters
that cover the low halves of these registers. This change adds artificial
subregisters for the high halves in order to differentiate (in terms of
register units) between the 32- and the low 16-bit registers.
This patch contains parts that aim to preserve the calculated register
pressure. This is in order to preserve the current codegen (minimize the
impact of this patch). The approach of having artificial subregisters
could be used to fix PR23423, but the pressure calculation would need
to be changed.
Differential Revision: https://reviews.llvm.org/D43353
llvm-svn: 328016
As suggested in the original review (https://reviews.llvm.org/D44524), use an annotation style printer instead.
Note: The switch from -analyze to -disable-output in tests was driven by the fact that seems to be the idiomatic style used in annoation passes. I tried to keep both working, but the old style pass API for printers really doesn't make this easy. It invokes (runOnFunction, print(Module)) repeatedly. I decided the extra state wasn't worth it given the old pass manager is going away soonish anyway.
llvm-svn: 328015
This diff adds support for SHT_GROUP sections to llvm-objcopy.
Some sections are interrelated and comprise a group.
For example, a definition of an inline function might require,
in addition to the section containing its instructions,
a read-only data section containing literals referenced inside the function.
A section of the type SHT_GROUP contains the indices of the group members,
therefore, it needs to be updated whenever the indices change.
Similarly, the fields sh_link, sh_info should be recalculated as well.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D43996
llvm-svn: 328012
This way we can support address-space specific variants without explicitly
encoding the space in the name of the intrinsic. Less intrinsics to deal with ->
less boilerplate.
Added a bit of tablegen magic to match/replace an intrinsics with a pointer
argument in particular address space with the space-specific instruction
variant.
Updated tests to use non-default address spaces.
Differential Revision: https://reviews.llvm.org/D43268
llvm-svn: 328006
Many of our loop passes make use of so called "must execute" or "guaranteed to execute" facts to prove the legality of code motion. The basic notion is that we know (by assumption) an instruction didn't fault at it's original location, so if the location we move it to is strictly post dominated by the original, then we can't have introduced a new fault.
At the moment, the testing for this logic is somewhat adhoc and done mostly through LICM. Since I'm working on that code, I want to improve the testing. This patch is the first step in that direction. It doesn't actually test the variant used by the loop passes - I need to move that to the Analysis library first - but instead exercises an alternate implementation used by SCEV. (I plan on merging both implementations.)
Note: I'll be replacing the printing logic within this with an annotation based version in the near future. Anna suggested this in review, and it seems like a strictly better format.
Differential Revision: https://reviews.llvm.org/D44524
llvm-svn: 328004
TopReadyCycle and BotReadyCycle were off by one cycle when an SU is either
the first instruction or the last instruction in a packet.
Patch by Ikhlas Ajbar.
llvm-svn: 328000
Summary:
Currently X-Ray Instrumentation pass has a dependency on MachineLoopInfo
(and thus on MachineDominatorTree as well) and we have to compute them
even if X-Ray is not used. This patch changes it to a lazy computation
to save compile time by avoiding these redundant computations.
Reviewers: dberris, kubamracek
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44666
llvm-svn: 327999
Summary:
Added a flag -no-dwarf-pub-sections, which allows to disable
emission of DWARF public sections.
Reviewers: probinson, echristo
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D44385
llvm-svn: 327994
Summary: Fix a bug in entry block shuffled to middle of the chain.
Reviewers: davide, courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44642
llvm-svn: 327971
The test is taken from
https://github.com/avr-rust/rust/issues/57
The originally implementation of struct return lowering was made in
r325474.
Patch by Peter Nimmervoll
llvm-svn: 327967
Summary:
It turned out to be error-prone to expect the callers to handle that - better to
leave the decision to this routine and make the required data to be explicitly
passed to the function.
This handles the case that was missed in the r322473 and fixes the assert
mentioned in PR36524.
Reviewers: dorit, mssimpso, Ayal, dcaballe
Reviewed By: dcaballe
Subscribers: Ka-Ka, hiraditya, dneilson, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D43812
llvm-svn: 327960
In these cases, both parameters and return values are passed
as a pointer to a stack allocation.
MSVC doesn't use the f80 data type at all, while it is used
for long doubles on mingw.
Normally, this part of the calling convention is handled
within clang, but for intrinsics that are lowered to libcalls,
it may need to be handled within llvm as well.
Differential Revision: https://reviews.llvm.org/D44592
llvm-svn: 327957
They were incorrectly marked as RMW operations. Some of the CMP instrucions worked, but the ones that use a similar encoding as RMW form of ADD ended up marked as RMW.
TEST used the same tablegen class as some of the CMPs.
llvm-svn: 327947
When scanning the function for CSRs uses and defs, also check if
the basic block are landing pads.
Consider that landing pads needs the CSRs to be properly set.
That way we force the prologue/epilogue to always be pushed out
of the problematic "throw" region. The "throw" region is
problematic because the jumps are not properly modeled.
Fixes PR36513
llvm-svn: 327942
E.g.
bar (int x)
{
char p[x];
push outgoing variables for foo.
call foo
}
We need to generate stack adjustment instructions for outgoing arguments by
eliminateCallFramePseudoInstr when the function contains variable size
objects to avoid outgoing variables corrupt the variable size object.
Default hasReservedCallFrame will return !hasFP().
We don't want to generate extra sp adjustment instructions when hasFP()
return true, So We override hasReservedCallFrame as !hasVarSizedObjects().
Differential Revision: https://reviews.llvm.org/D43752
llvm-svn: 327938
Summary:
name@@@nodename is going to be replaced with name@@nodename if symbols is
defined in the assembled file, or name@nodename if undefined.
https://sourceware.org/binutils/docs/as/Symver.html
Fixes PR36623
Reviewers: pcc, espindola
Subscribers: mehdi_amini, hiraditya
Differential Revision: https://reviews.llvm.org/D44274
llvm-svn: 327930
Summary:
DbgValue nodes were not transferred when integer DAG nodes were promoted. For example, if an i32 add node was promoted to an i64 add node by DAGTypeLegalizer::PromoteIntegerResult(), its DbgValue node was not transferred to the new node. The simple fix is to update SetPromotedInteger() to transfer DbgValues.
Add AArch64/dbg-value-i8.ll to test this change and fix ARM/debug-info-d16-reg.ll which had the wrong DILocalVariable nodes with arg numbers even though they are not for function parameters.
Patch by Se Jong Oh!
Reviewers: vsk, JDevlieghere, aprantl
Reviewed By: JDevlieghere
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44546
llvm-svn: 327919
When outlining calls, the outliner needs to update CFI to ensure that, say,
exception handling works. This commit adds that functionality and adds a test
just for call outlining.
Call outlining stuff in machine-outliner.mir should be moved into
machine-outliner-calls.mir in a later commit.
llvm-svn: 327917
This extends the use of this attribute on ARM and AArch64 from
SVN r325900 (where it was only checked for fixed stack
allocations on ARM/AArch64, but for all stack allocations on X86).
This also adds a testcase for the existing use of disabling the
fixed stack probe with the attribute on ARM and AArch64.
Differential Revision: https://reviews.llvm.org/D44291
llvm-svn: 327897
PR35590 was already filed for this information being wrong. It's probably better to default to WriteSystem behavior instead of using something completely wrong.
llvm-svn: 327882
JRCXZ was already present, but not the others.
We never codegen this instruction so this doesn't affect much just trying to get them all into a single generated scheduler class in the output.
llvm-svn: 327881
The regex was looking for JECXZ_32 or JECXZ_64, but their is just one instruction called JECXZ. They used to exist as separate instructions, but were merged over 3 years ago.
llvm-svn: 327880
PowerPC targets do not use address spaces. As a result, we can get selection
failures with address space casts. This patch makes those casts noops.
Patch by Valentin Churavy.
Differential revision: https://reviews.llvm.org/D43781
llvm-svn: 327877
With the SRAs removed from the SSE2 code in D44267, then there doesn't appear to be any advantage to the sse41 code. The punpcklbw instruction and pmovsx seem to have the same latency and throughput on most CPUs. And the SSE41 code requires moving the upper 64-bits into the lower 64-bit before the sign extend can be done. The unpckhbw in sse2 code can do better than that.
llvm-svn: 327869
Sometimes we used the same itinerary for MEM and REG forms, but that seems inconsistent with our usual usage.
We also used the MUL8 itinerary for MULX32/64 which was also weird.
The test changes are because we were using IIC_IMUL32_RR and IIC_IMUL64_RR instead of IIC_IMUL32_REG/IIC_IMUL64_REG for the 32 and 64 bit multiplies that produce double width result.
llvm-svn: 327866
Summary:
This patch prevents DBG_VALUE instructions from influencing
LivePhysRegs::stepBackwards and stepForwards. In at least one case,
specifically branch folding, the stepBackwards logic was having an
influence on code generation. The result was that certain code
compiled with '-g -O2' would differ from that compiled with '-O2'
alone. It seems that the original logic, accounting for DBG_VALUE,
was influencing the placement of an IMPLICIT_DEF which had a later
impact on how blocks were processed in branch folding.
Reviewers: kparzysz, MatzeB
Reviewed By: kparzysz
Subscribers: bjope, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D43850
llvm-svn: 327862
This is complicated by -0.0 and nan. This is based on the DAG patterns
as shown in D44091. I'm hoping that we can just remove those DAG folds
and always rely on IR canonicalization to handle the matching to fabs.
We would still need to delete the broken code from DAGCombiner to fix
PR36600:
https://bugs.llvm.org/show_bug.cgi?id=36600
Differential Revision: https://reviews.llvm.org/D44550
llvm-svn: 327858
This patch adds functions to allow MachineLICM to hoist invariant stores.
Currently, MachineLICM does not hoist any store instructions, however
when storing the same value to a constant spot on the stack, the store
instruction should be considered invariant and be hoisted. The function
isInvariantStore iterates each operand of the store instruction and checks
that each register operand satisfies isCallerPreservedPhysReg. The store
may be fed by a copy, which is hoisted by isCopyFeedingInvariantStore.
This patch also adds the PowerPC changes needed to consider the stack
register as caller preserved.
Differential Revision: https://reviews.llvm.org/D40196
llvm-svn: 327856
Currently the WriteResPair style multi-classes take a single pipeline stage and latency, this patch generalizes this to make it easier to create complex schedules with ResourceCycles and NumMicroOps be overriden from their defaults.
This has already been done for the Jaguar scheduler to remove a number of custom schedule classes and adding it to the other x86 targets will make it much tidier as we add additional classes in the future to try and replace so many custom cases.
I've converted some instructions but a lot of the models need a bit of cleanup after the patch has been committed - memory latencies not being consistent, the class not actually being used when we could remove some/all customs, etc. I'd prefer to keep this as NFC as possible so later patches can be smaller and target specific.
Differential Revision: https://reviews.llvm.org/D44612
llvm-svn: 327855
1. Given that we already have a classification bucket with 'nop' in the name,
that's where 'nop' belongs. Right now, it's only used for prefix bytes and 'pause'.
2. Make the latency of this class '1' for Jaguar to tell the scheduler (and presumably
llvm-mca) how to model the resource requirements better even though a nop has no
dependencies.
Differential Revision: https://reviews.llvm.org/D44608
llvm-svn: 327853
Summary:
Otherwise, patterns like in the test case produce cryptic error
messages about fields being resolved incompletely.
Change-Id: I713c0191f00fe140ad698675803ab1f8823dc5bd
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D44476
llvm-svn: 327850
Summary:
The docs already claim that this happens, but so far it hasn't. As a
consequence, existing TableGen files get this wrong a lot, but luckily
the fixes are all reasonably straightforward.
To make this work with all the existing forms of self-references (since
the true type of a record is only built up over time), the lookup of
self-references in !cast is delayed until the final resolving step.
Change-Id: If5923a72a252ba2fbc81a889d59775df0ef31164
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D44475
llvm-svn: 327849
Summary:
These are cases of self-references that exist today in practice. Let's
add tests for them to avoid regressions.
The self-references in PPCInstrInfo.td can be expressed in a simpler
way. Allowing this type of self-reference while at the same time
consistently doing late-resolve even for self-references is problematic
because there are references to fields that aren't in any class. Since
there's no need for this type of self-reference anyway, let's just
remove it.
Change-Id: I914e0b3e1ae7adae33855fac409b536879bc3f62
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: nemanjai, wdng, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D44474
llvm-svn: 327848
Summary:
Cast-from-string for records isn't going away, but cast-from-string for
variables is a pretty dodgy feature to have, especially when referencing
template arguments. It's doubtful that this ever worked in a reliable
way, and nobody seems to be using it, so let's get rid of it and get
some related cleanups.
Change-Id: I395ac8a43fef4cf98e611f2f552300d21e99b66a
Reviewers: arsenm, craig.topper, tra, MartinO
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D44195
llvm-svn: 327844
Normally DCE kills these, but at -O0 these get left behind
leaving suspicious looking illegal copies.
Replace with IMPLICIT_DEF to avoid iterator issues.
llvm-svn: 327842
This is the groundwork for adding the Armv8.2-A FP16 vector intrinsics, which
uses v4f16 and v8f16 vector operands and return values. All the moving parts
are tested with two intrinsics, a 1-operand v8f16 and a 2-operand v4f16
intrinsic. In a follow-up patch the rest of the intrinsics and tests will be
added.
Differential Revision: https://reviews.llvm.org/D44538
llvm-svn: 327839
If DoneMBB becomes empty it must have CC added to its live-in list, since it
will fall-through into EndMBB. This happens when the CLC loop does the
complete range.
Review: Ulrich Weigand
llvm-svn: 327834
This is re-land of https://reviews.llvm.org/rL327362 with a fix
and regression test.
The crash was due to it is possible that for found MDL loop,
LHS or RHS may contain an invariant unknown SCEV which
does not dominate the MDL. Please see regression
test for an example.
Reviewers: sanjoy, mkazantsev, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44553
llvm-svn: 327822
Also move ADC8i8 and SBB8i8 in the Sandy Bridge model to the same class as ADC8ri and SBB8ri. That seems more accurate since its the 8i8 is just the register forced to AL instead of coming from modrm.
llvm-svn: 327820
This patch adds i128 division support by instruction LLVM to lower
128-bit divisions to the __udivmodti4 and __divmodti4 rtlib functions.
This also adds test for 64-bit division and 128-bit division.
Patch by Peter Nimmervoll.
llvm-svn: 327814