During the optimisation of jump tables in the constant island pass,
an extra ADD could be left over, now dead but not removed.
Differential Revision: https://reviews.llvm.org/D31389
llvm-svn: 299634
Summary:
LSV wants to know the maximum size that can be loaded to a vector register.
On X86, this always matches the maximum register width. Implement this
accordingly and add a test to make sure that LSV can vectorize up to the
maximum permissible width on X86.
Reviewers: delena, arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31504
llvm-svn: 299589
This is a follow-on to r299096 which added support for fmadd.
Subtract does not have the case where with two multiply operands we commute in
order to fuse with the multiply with the fewer uses.
llvm-svn: 299572
Commit r298799 changed code that made the XFAIL on MachineBranchProb.ll
irrelevant, but some configurations still failed. I can't reproduce it
locally, so I'm hoping that enabling this will tell me if some
configurations will really fail or if they were just too slow.
llvm-svn: 299558
This test case depends on the loop being vectorized without forcing the
vectorization factor. If the profitability ever changes in the future (due to
cost model improvements), the test may no longer work as intended. Instead of
checking the resulting IR, we should just check the instruction costs. The
costs will be computed regardless if vectorization is profitable.
llvm-svn: 299545
This is a generic combine enabled via target hook to reduce icmp logic as discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32401
It's likely that other targets will want to enable this hook for scalar transforms,
and there are probably other patterns that can use bitwise logic to reduce comparisons.
Note that we are missing an IR canonicalization for these patterns, and we will probably
prefer the pair-of-compares form in IR (shorter, more likely to fold).
Differential Revision: https://reviews.llvm.org/D31483
llvm-svn: 299542
When DAGCombiner visits a SIGN_EXTEND_INREG of a BUILD_VECTOR with
constant operands, a new BUILD_VECTOR node will be created transformed
constants.
Llvm-stress found a case where the new BUILD_VECTOR had constant operands
of an illegal type, because the (legal) element type is in fact not a legal
scalar type.
This patch changes this so that the new BUILD_VECTOR has the same operand
type as the old one.
Review: Eli Friedman, Nirav Dave
https://bugs.llvm.org//show_bug.cgi?id=32422
llvm-svn: 299540
Summary:
Temporaries are now allocated to operands instead of predicates and this
allocation is used to correctly pair up the rendered operands with the
matched operands.
Previously, ComplexPatterns were allocated temporaries independently in the
Src Pattern and Dst Pattern, leading to mismatches. Additionally, the Dst
Pattern failed to account for the allocated index and therefore always used
temporary 0, 1, ... when it should have used base+0, base+1, ...
Thanks to Aditya Nandakumar for noticing the bug.
Depends on D30539
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: igorb, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D31054
llvm-svn: 299538
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
This is a latent bug that's been hanging around for a while. For a loop-invariant
pointer, expandBounds would return the range {Ptr, Ptr}, but this was interpreted
as a half-open range, not a closed range. So we ended up planting incorrect
bounds checks. Even worse, they were tautological, so we ended up incorrectly
executing the optimized loop.
llvm-svn: 299526
Fix a bug in ARC contract pass where an iterator that pointed to a
deleted instruction was dereferenced.
It appears that tryToContractReleaseIntoStoreStrong was incorrectly
assuming that a call to objc_retain would not immediately follow a call
to objc_release.
rdar://problem/25276306
llvm-svn: 299507
Before r294774, there was a problem when lowering broadcasts to use
128-bit subvectors.
When we looked through a bitcast to find the broadcast input, we'd keep
using the original type, so you'd end up with things like:
(v8f32 (broadcast
(v4f32 (extract_subvector
(v8i32 V),
...))
))
r294774 fixed it to always emit subvectors with the scalar type of the
original source.
It also introduced some asserts, to check that we use scalars with
the same size, and vectors with the same number of elements.
The scalar size equality is checked earlier when looking through bitcasts,
and is a useful assert.
However, the number of elements don't have to be identical: we're always
going to extract a 128-bit subvector, and we can have different size
inputs if we looked through a concat_vector to find a 256-bit source.
Relax the overzealous assert.
Replace it with a check of the original source vector being 256 or 512
bits. If it's 128 bits, we can't extract_subvector from it.
Fixes PR32371.
llvm-svn: 299490
Set correct default flags and section type based on its name for .text,
.data, .bss, .init_array, .fini_array, .preinit_array, .tdata, and .tbss
and support section name suffixes for .data.*, .rodata.*, .text.*,
.bss.*, .tdata.* and .tbss.* which matches the behavior of GAS.
Fixes PR31888.
Differential Revision: https://reviews.llvm.org/D30229
llvm-svn: 299484
This improves upon r246462: that prevented FMOVs from being emitted
for the cross-class INSERT_SUBREGs by disabling the formation of
INSERT_SUBREGs of LOAD. But the ld1.s that we started selecting
caused us to introduce partial dependencies on the vector register.
Avoid that by using SCALAR_TO_VECTOR: it's a first-class citizen that
is folded away by many patterns, including the scalar LDRS that we
want in this case.
Credit goes to Adam for finding the issue!
llvm-svn: 299482
Currently we only fold with ConstantInt RHS. This generalizes to any Constant RHS.
Differential Revision: https://reviews.llvm.org/D31610
llvm-svn: 299466
This mode is just like -mcmodel=small except that it moves the
thread pointer from TPIDR_EL0 to TPIDR_EL1.
Patch by Roland McGrath.
Differential Revision: https://reviews.llvm.org/D31624
llvm-svn: 299462
This patch optimizes two memory intrinsic operations: memset and memcpy based
on the profiled size of the operation. The high level transformation is like:
mem_op(..., size)
==>
switch (size) {
case s1:
mem_op(..., s1);
goto merge_bb;
case s2:
mem_op(..., s2);
goto merge_bb;
...
default:
mem_op(..., size);
goto merge_bb;
}
merge_bb:
Differential Revision: http://reviews.llvm.org/D28966
llvm-svn: 299446
This patch is a part one of two reviews, one for the clang and the other for LLVM.
The patch deletes the back-end intrinsics and adds support for them in the auto upgrade.
Differential Revision: https://reviews.llvm.org/D31393
llvm-svn: 299432
Summary:
Lift the restrictions that prevented the tree walking introduced in the
previous change and add support for patterns like:
(G_ADD (G_MUL (G_SEXT $src1), (G_SEXT $src2)), $src3) -> SMADDWrrr $dst, $src1, $src2, $src3
Also adds support for G_SEXT and G_ZEXT to support these cases.
One particular aspect of this that I should draw attention to is that I've
tried to be overly conservative in determining the safety of matches that
involve non-adjacent instructions and multiple basic blocks. This is intended
to be used as a cheap initial check and we may add a more expensive check in
the future. The current rules are:
* Reject if any instruction may load/store (we'd need to check for intervening
memory operations.
* Reject if any instruction has implicit operands.
* Reject if any instruction has unmodelled side-effects.
See isObviouslySafeToFold().
Reviewers: t.p.northover, javed.absar, qcolombet, aditya_nandakumar, ab, rovka
Reviewed By: ab
Subscribers: igorb, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30539
llvm-svn: 299430
This patch teaches the hazard scheduler how to handle empty blocks
when search for the next real instruction when dealing with forbidden
slots.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D31293
llvm-svn: 299427
PSADBW pattern currently supports the 32 bit IR pattern and only GLT (greather than) comparison.
The patch extends the pattern to catch also 64 bit IR pattern and includes all other comparison types (not only GLT).
Differential Revision: https://reviews.llvm.org/D31577
llvm-svn: 299425
Otherwise, yamlize in YAMLTraits.h might be wrongly defined.
This makes some AMDGPU tests fail when LLVM_LINK_LLVM_DYLIB is set.
Differential Revision: https://reviews.llvm.org/D30508
llvm-svn: 299415
Summary:
MASM can produce type streams that are not topologically sorted. It can
even produce type streams with circular references, but those are not
common in practice.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31629
llvm-svn: 299403
Summary:
Add a hook for simplification of shufflevector's with the following rules:
- Constant folding - NFC, as it was already being done by the default handler.
- If only one of the operands is constant, constant fold the shuffle if the
mask does not select elements from the variable operand - to show the hook is firing and affecting the test-cases.
Reviewers: RKSimon, craig.topper, spatel, sanjoy, nlopes, majnemer
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31525
llvm-svn: 299393