So far, support for x86_64-linux-gnux32 has been handled by explicit
comparisons of Triple.getEnvironment() to GNUX32. This worked as long as
x86_64-linux-gnux32 was the only X32 environment to worry about, but we
now have x86_64-linux-muslx32 as well. To support this, this change adds
an isX32() function and uses it. It replaces all checks for GNUX32 or
MuslX32 by isX32(), except for the following:
- Triple::isGNUEnvironment() and Triple::isMusl() are supposed to treat
GNUX32 and MuslX32 differently.
- computeTargetTriple() needs to be able to transform triples to add or
remove X32 from the environment and needs to map GNU to GNUX32, and
Musl to MuslX32.
- getMultiarchTriple() completely lacks any Musl support and retains the
explicit check for GNUX32 as it can only return x86_64-linux-gnux32.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D103777
This reverts commit 3b8ec86fd5.
Revert "[X86] Refine AMX fast register allocation"
This reverts commit c3f95e9197.
This pass breaks using LLVM in a multi-threaded environment by
introducing global state.
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
This pass runs in any situations but we skip it when it is not O0 and the
function doesn't have optnone attribute. With -O0, the def of shape to amx
intrinsics is near the amx intrinsics code. We are not able to find a
point which post-dominate all the shape and dominate all amx intrinsics.
To decouple the dependency of the shape, we transform amx intrinsics
to scalar operation, so that compiling doesn't fail. In long term, we
should improve fast register allocation to allocate amx register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D93594
This pass runs in any situations but we skip it when it is not O0 and the
function doesn't have optnone attribute. With -O0, the def of shape to amx
intrinsics is near the amx intrinsics code. We are not able to find a
point which post-dominate all the shape and dominate all amx intrinsics.
To decouple the dependency of the shape, we transform amx intrinsics
to scalar operation, so that compiling doesn't fail. In long term, we
should improve fast register allocation to allocate amx register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D93594
To do this while supporting the existing functionality in SelectionDAG of using
PGO info, we add the ProfileSummaryInfo and LazyBlockFrequencyInfo analysis
dependencies to the instruction selector pass.
Then, use the predicate to generate constant pool loads for f32 materialization,
if we're targeting optsize/minsize.
Differential Revision: https://reviews.llvm.org/D97732
Since there is no tile copy instruction, we need to store tile
register to stack and load from stack to another tile register.
We need extra GR to hold the stride, and we need stack slot to
hold the tile data register. We would run this pass after copy
propagation, so that we don't miss copy optimization. And we
would run this pass before prolog/epilog insertion, so that we
can allocate stack slot.
Differential Revision: https://reviews.llvm.org/D97112
In the future Windows will enable Control-flow Enforcement Technology (CET aka shadow stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
This change allows llvm to generate the section that contains the appropriate symbol references in the form expected by the msvc linker.
This feature is enabled through a new module flag, ehcontguard, which was modelled on the cfguard flag.
The change includes a test that when the module flag is enabled the section is correctly generated.
The set of exception continuation information includes returns from exceptional control flow (catchret in llvm).
In order to collect catchret we:
1) Includes an additional flag on machine basic blocks to indicate that the given block is the target of a catchret operation,
2) Introduces a new machine function pass to insert and collect symbols at the start of each block, and
3) Combines these targets with the other EHCont targets that were already being collected.
Change originally authored by Daniel Frampton <dframpto@microsoft.com>
For more details, see MSVC documentation for `/guard:ehcont`
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-eh-continuation-metadata
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D94835
This patch implements amx programming model that discussed in llvm-dev
(http://lists.llvm.org/pipermail/llvm-dev/2020-August/144302.html).
Thank Hal for the good suggestion in the RA. The fast RA is not in the patch yet.
This patch implemeted 7 components.
1. The c interface to end user.
2. The AMX intrinsics in LLVM IR.
3. Transform load/store <256 x i32> to AMX intrinsics or split the
type into two <128 x i32>.
4. The Lowering from AMX intrinsics to AMX pseudo instruction.
5. Insert psuedo ldtilecfg and build the def-use between ldtilecfg to amx
intruction.
6. The register allocation for tile register.
7. Morph AMX pseudo instruction to AMX real instruction.
Change-Id: I935e1080916ffcb72af54c2c83faa8b2e97d5cb0
Differential Revision: https://reviews.llvm.org/D87981
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
We weren't using this before, so none of the MachineFunction CFG edges had the
branch probability information added. As a result, block placement later in the
pipeline was flying blind.
This is enabled only with optimizations enabled like SelectionDAG.
Differential Revision: https://reviews.llvm.org/D86824
There's a special case in hasAttribute for None when pImpl is null. If pImpl is not null we dispatch to pImpl->hasAttribute which will always return false for Attribute::None.
So if we just want to check for None its sufficient to just check that pImpl is null. Which can even be done inline.
This patch adds a helper for that case which I hope will speed up our getSubtargetImpl implementations.
Differential Revision: https://reviews.llvm.org/D86744
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
As briefly discussed in IRC with @craig.topper,
the pass is disabled basically since it's original introduction (nov 2018)
due to known correctness issues (miscompilations),
and there hasn't been much work done to fix that.
While i won't promise that i will "fix" the pass,
i have looked at it previously, and i'm sure i won't try to fix it
if that requires actually fixing this existing code.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D84775
We use a SmallString<512> and attempted to reserve enough space
for CPU plus Features, but that doesn't account for all the things
that get added to the string.
Reorder the string so the shortest things go first which shouldn't
exceed the small size. Finally add the feature string at the end
which might be long. This should ensure at most one heap allocation
without needing to use reserve.
I don't know if this matters much in practice, but I was looking
into something else that will require more code here and noticed
the odd reserve call.
Use SESES as the fallback at O0 where the optimized LVI pass isn't desired due
to its effect on build times at O0.
I updated the LVI tests since this changes the code gen for the tests touched in the parent revision.
This is a follow up to the comments I made here: https://reviews.llvm.org/D80964
Hopefully we can continue the discussion here.
Also updated SESES to handle LFENCE instructions properly instead of adding
redundant LFENCEs. In particular, 1) no longer add LFENCE if the current
instruction being processed is an LFENCE and 2) no longer add LFENCE if the
instruction right before the instruction being processed is an LFENCE
Reviewed By: sconstab
Differential Revision: https://reviews.llvm.org/D82037
This pass has no dependencies on other passes so conditionally
including it in the pipeline doens't do much. Just move it the
pass itself to keep it isolated.
A lot of what EVEX->VEX does is equivalent to what the
prioritization in the assembly parser does. When an AVX mnemonic
is used without any EVEX features or XMM16-31, the parser will
pick the VEX encoding.
Since codegen doesn't go through the parser, we should also
use VEX instructions when we can so that the code coming out of
integrated assembler matches what you'd get from outputing an
assembly listing and parsing it.
The pass early outs if AVX isn't enabled and uses TSFlags to
check for EVEX instructions before doing the more costly table
lookups. Hopefully that's enough to keep this from impacting
-O0 compile times.
@nikic raised an issue on D75936 that the added complexity to the O0 pipeline was causing noticeable slowdowns for `-O0` builds. This patch addresses the issue by adding a pass with equal security properties, but without any optimizations (and more importantly, without the need for expensive analysis dependencies).
Reviewers: nikic, craig.topper, mattdr
Reviewed By: craig.topper, mattdr
Differential Revision: https://reviews.llvm.org/D80964
Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.
More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).
Also adds a new target feature to X86: +lvi-load-hardening
The feature can be added via the clang CLI using -mlvi-hardening.
Differential Revision: https://reviews.llvm.org/D75936
This is an implementation of Speculative Execution Side Effect
Suppression which is intended as a last resort mitigation against Load
Value Injection, LVI, a newly disclosed speculative execution side
channel vulnerability.
One pager:
https://software.intel.com/security-software-guidance/software-guidance/load-value-injection
Deep dive:
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
The mitigation consists of a compiler pass that inserts an LFENCE before
each memory read instruction, memory write instruction, and the first
branch instruction in a group of terminators at the end of a basic
block. The goal is to prevent speculative execution, potentially based
on misspeculated conditions and/or containing secret data, from leaking
that data via side channels embedded in such instructions.
This is something of a last-resort mitigation: it is expected to have
extreme performance implications and it may not be a complete mitigation
due to trying to enumerate side channels.
In addition to the full version of the mitigation, this patch
implements three flags to turn off part of the mitigation. These flags
are disabled by default. The flags are not intended to result in a
secure variant of the mitigation. The flags are intended to be used by
users who would like to experiment with improving the performance of
the mitigation. I ran benchmarks with each of these flags enabled in
order to find if there was any room for further optimization of LFENCE
placement with respect to LVI.
Performance Testing Results
When applying this mitigation to BoringSSL, we see the following
results. These are a summary/aggregation of the performance changes when
this mitigation is applied versus when no mitigation is applied.
Fully Mitigated vs Baseline
Geometric mean
0.071 (Note: This can be read as the ops/s of the mitigated
program was 7.1% of the ops/s of the unmitigated program.)
Minimum
0.041
Quartile 1
0.060
Median
0.063
Quartile 3
0.077
Maximum
0.230
Reviewed By: george.burgess.iv
Differential Revision: https://reviews.llvm.org/D75939
Do not commit the llvm/test/ExecutionEngine/MCJIT/cet-code-model-lager.ll because it will
cause build bot fail(not suitable for window 32 target).
Summary:
This patch comes from H.J.'s 2bd54ce7fa
**This patch fix the failed llvm unit tests which running on CET machine. **(e.g. ExecutionEngine/MCJIT/MCJITTests)
The reason we enable IBT at "JIT compiled with CET" is mainly that: the JIT don't know the its caller program is CET enable or not.
If JIT's caller program is non-CET, it is no problem JIT generate CET code or not.
But if JIT's caller program is CET enabled, JIT must generate CET code or it will cause Control protection exceptions.
I have test the patch at llvm-unit-test and llvm-test-suite at CET machine. It passed.
and H.J. also test it at building and running VNCserver(Virtual Network Console), it works too.
(if not apply this patch, VNCserver will crash at CET machine.)
Reviewers: hjl.tools, craig.topper, LuoYuanke, annita.zhang, pengfei
Reviewed By: LuoYuanke
Subscribers: tstellar, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76900
ExecutionEngine/MCJIT/cet-code-model-lager.ll is failing on 32-bit
windows, see llvm-commits thread for fef2dab.
This reverts commit 43f031d312
and the follow-ups fef2dab100 and
6a800f6f62.
Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.
More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).
Also adds a new target feature to X86: +lvi-load-hardening
The feature can be added via the clang CLI using -mlvi-hardening.
Differential Revision: https://reviews.llvm.org/D75936
Adding a pass that replaces every ret instruction with the sequence:
pop <scratch-reg>
lfence
jmp *<scratch-reg>
where <scratch-reg> is some available scratch register, according to the
calling convention of the function being mitigated.
Differential Revision: https://reviews.llvm.org/D75935
Summary:
This patch comes from H.J.'s 2bd54ce7fa
**This patch fix the failed llvm unit tests which running on CET machine. **(e.g. ExecutionEngine/MCJIT/MCJITTests)
The reason we enable IBT at "JIT compiled with CET" is mainly that: the JIT don't know the its caller program is CET enable or not.
If JIT's caller program is non-CET, it is no problem JIT generate CET code or not.
But if JIT's caller program is CET enabled, JIT must generate CET code or it will cause Control protection exceptions.
I have test the patch at llvm-unit-test and llvm-test-suite at CET machine. It passed.
and H.J. also test it at building and running VNCserver(Virtual Network Console), it works too.
(if not apply this patch, VNCserver will crash at CET machine.)
Reviewers: hjl.tools, craig.topper, LuoYuanke, annita.zhang, pengfei
Subscribers: tstellar, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76900
These transforms rely on a vector reduction flag on the SDNode
set by SelectionDAGBuilder. This flag exists because SelectionDAG
can't see across basic blocks so SelectionDAGBuilder is looking
across and saving the info. X86 is the only target that uses this
flag currently. By removing the X86 code we can remove the flag
and the SelectionDAGBuilder code.
This pass adds a dedicated IR pass for X86 that looks across the
blocks and transforms the IR into a form that the X86 SelectionDAG
can finish.
An advantage of this new approach is that we can enhance it to
shrink the phi nodes and final reduction tree based on the zeroes
that we need to concatenate to bring the partially reduced
reduction back up to the original width.
Differential Revision: https://reviews.llvm.org/D76649
Otherwise, the Win64 unwinder considers direct branches to such empty
trailing BBs to be a branch out of the function. It treats such a branch
as a tail call, which can only be part of an epilogue. If the unwinder
misclassifies such a branch as part of the epilogue, it will fail to
unwind the stack further. This can lead to bad stack traces, or failure
to handle exceptions properly. This is described in
https://llvm.org/PR45064#c4, and by the comment at the top of the
X86AvoidTrailingCallPass.cpp file.
It should be safe to insert int3 for such blocks. An empty trailing BB
that reaches this pass is pretty much guaranteed to be unreachable. If
a program executed such a block, it would fall off the end of the
function.
Most of the complexity in this patch comes from threading through the
"EHFuncletEntry" boolean on the MIRParser and registering the pass so we
can stop and start codegen around it. I used an MIR test because we
should teach LLVM to optimize away these branches as a follow-up.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D76531
-fuse-init-array is now the CC1 default but TargetLoweringObjectFileELF::UseInitArray still defaults to false.
The following two unknown OS target triples continue using .ctors/.dtors because InitializeELF is not called.
clang -target i386 -c a.c
clang -target x86_64 -c a.c
This cleanup fixes this as a bonus.
X86SpeculativeLoadHardeningPass::tracePredStateThroughCall can call
MCContext::createTempSymbol before TargetLoweringObjectFileELF::Initialize().
We need to call TargetLoweringObjectFileELF::Initialize() ealier.
test/CodeGen/X86/speculative-load-hardening-indirect.ll
Differential Revision: https://reviews.llvm.org/D71360
UseInitArray is now the CC1 default but TargetLoweringObjectFileELF::UseInitArray still defaults to false.
The following two unknown OS target triples continue using .ctors/.dtors because InitializeELF is not called.
clang -target i386 -c a.c
clang -target x86_64 -c a.c
This cleanup fixes this as a bonus.
Differential Revision: https://reviews.llvm.org/D71360