All floating point values in registers are in double precision
representation. In order to materialize the correct single precision
value, we need to convert the APFloat that represents the value
to double precision first.
Reviewed By: amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D106812
Before MASSV only supported P8 and P9 on AIX ans Linux . This patch proposes
MASSV to add support of P7 and P10 only on AIX too.
Differential: https://reviews.llvm.org/D106678
Add td definitions and asm/disasm tests for the addex instruction introduced in
ISA 3.0.
Reviewed By: nemanjai, amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D106666
This is a followup patch for D105930 to add implicit-def of RM for
mtfsb[01] instructions as per review comments.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D106603
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtin and intrinsic for "__stbcx".
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D106484
This patch is in a series of patches to provide
builtins for compatibility with the XL compiler.
This patch adds builtins related to floating point
operations
Reviewed By: #powerpc, nemanjai, amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D103986
Implemented builtins for mtmsr, mfspr, mtspr on PowerPC;
the patch is intended for XL Compatibility.
Differential revision: https://reviews.llvm.org/D106130
This patch implements store, load, move from and to registers related
builtins, as well as the builtin for stfiw. The patch aims to provide
feature parady with xlC on AIX.
Differential revision: https://reviews.llvm.org/D105946
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch add the builtin and emit target independent
code for __cmpb.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D105194
ACC registers are a combination of four consecutive vector registers.
If the vector registers are assigned first this often forces a number
of copies to appear just before the ACC register is created. If the ACC
register is assigned first then fewer copies are generated when the vector
registers are assigned.
This patch tries to force the register allocator to assign the ACC registers first
and then the UACC registers and then the vector pair registers. It does this
by changing the priority of the register classes.
This patch also adds hints to help the register allocator assign UACC registers from
known ACC registers and vector pair registers from known UACC registers.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D105854
This provides intrinsics for emitting instructions that set the FPSCR (`mtfsf/mtfsfi`).
The patch also conservatively marks the rounding mode as an implicit def for both since they both may set the rounding mode depending on the operands.
Reviewed By: #powerpc, qiucf
Differential Revision: https://reviews.llvm.org/D105957
Implement a subset of builtins required for compatiblilty with AIX XL compiler.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D105930
This patch includes the following updates to the load/store refactoring effort introduced in D93370:
- Update various VSX patterns that use to "force" an XForm, to instead just XForm.
This allows the ability for the patterns to compute the most optimal addressing
mode (and to produce a DForm instruction when possible)
- Update pattern and test case for the LXVD2X/STXVD2X intrinsics
- Update LIT test cases that use to use the XForm instruction to use the DForm instruction
Differential Revision: https://reviews.llvm.org/D95115
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for population
count, reversed load and store related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D106021
This patch implements the `__popcntb` XL compatibility builtin for 32bit in the frontend and backend. This patch also updates tests for `__popcntb` and other XL Compat sync related builtins.
Reviewed By: #powerpc, nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D105360
This patch uses AtomicExpandPass to implement quadword lock free atomic operations. It adopts the method introduced in https://reviews.llvm.org/D47882, which expand atomic operations post RA to avoid spilling that might prevent LL/SC progress.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D103614
$ is used as PC for PowerPC inlineasm, ELF use it,
enable it for AIX XCOFF as well.
Reviewed By: #powerpc, amyk, nemanjai
Differential Revision: https://reviews.llvm.org/D105956
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for compare
and multiply related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D102875
[NFC] This patch adds features for pwr7, pwr8, and pwr9 that can be
used for semachecking builtin functions that are only valid for certain
versions of ppc.
Reviewed By: nemanjai, #powerpc
Authored By: Quinn Pham <Quinn.Pham@ibm.com>
Differential revision: https://reviews.llvm.org/D105501
This patch adds a function that checks whether or not the frame index
is aligned when the computed addressing mode is an aligned D-Form (DS, or DQ-Form).
If the frame index appears to be unaligned, within these two modes, reset
the mode to X-Form in order to fall back to selection X-Form loads.
A test case is added to ensure that the test emits X-Form loads and not DQ-Form
loads since the frame index is not aligned within the test case.
Differential Revision: https://reviews.llvm.org/D105661
LDARX and LWARX sometimes gets optimized out by the compiler
when it is critical to the correctness of the code. This inline asm generation
ensures that it preserved.
Differential Revision: https://reviews.llvm.org/D105754
[NFC] This patch adds features for pwr7, pwr8, and pwr9 that can be
used for semachecking builtin functions that are only valid for certain
versions of ppc.
Reviewed By: nemanjai, #powerpc
Authored By: Quinn Pham <Quinn.Pham@ibm.com>
Differential revision: https://reviews.llvm.org/D105501
An assertion of the following can occur because Altivec and VSX splats use a different operand number for the immediate:
```
int64_t llvm::MachineOperand::getImm() const: Assertion `isImm() && "Wrong MachineOperand accessor"' failed.
```
This patch updates PPCMIPeephole.cpp assign the correct splat immediate.
Differential Revision: https://reviews.llvm.org/D105790
The lowering for v2i64 is now guarded with hasDirectMove,
however, the current lowering can handle the pattern correctly,
only lowering it when there is efficient patterns and corresponding
instructions.
The original guard was added in D21135, and was for Legal action.
The code has evloved now, this guard is not necessary anymore.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D105596
This patch implements trap and FP to and from double conversions. The builtins
generate code that mirror what is generated from the XL compiler. Intrinsics
are named conventionally with builtin_ppc, but are aliased to provide the same
builtin names as the XL compiler.
Differential Revision: https://reviews.llvm.org/D103668
Summary:
The bit order of the has_vec and longtbtable bits in the traceback table generated by the XL compiler flipped at some point after v12.1. This is different from the definition is the AIX header debug.h. The change in the XL compiler that caused the deviation from the OS header definition was unintentional. Since both orderings are extant and the XL compiler runtime also expects the ordering defined by the OS, we will correct the output from LLVM to match the defined ordering given by the OS (which is also consistent with the Assembler Language Reference). Mitigation for traceback tables encoded with the wrong ordering is required for either ordering.
Reviewers: XingXue, HubertTong
Differential Revision: https://reviews.llvm.org/D105487
When the instruction has imm form and fed by LI, we can remove the redundat LI instruction.
Below is an example:
```
renamable $x5 = LI8 2
renamable $x4 = exact SRD killed renamable $x4, killed renamable $r5, implicit $x5
```
will be converted to:
```
renamable $x5 = LI8 2
renamable $x4 = exact RLDICL killed renamable $x4, 62, 2, implicit killed $x5
```
But when we do this optimization, we forget to remove implicit killed $x5
This bug has caused a lnt case error. This patch is to fix above bug.
Reviewed By: #powerpc, shchenz
Differential Revision: https://reviews.llvm.org/D85288
SelectionDAG's equivalents in ISD::InputArg/OutputArg track the
original argument index. Mips relies on this, and its currently
reinventing its own parallel CallLowering infrastructure which tracks
these indexes on the side. Add this to help move towards deleting the
custom mips handling.
Lowering for scalar to vector would skip if current subtarget is big
endian and the scalar is larger or equal than 64 bits. However there's
some issue in implementation that SToVRHS may refer to SToVLHS's scalar
size if SToVLHS is present, which leads to some crash.o
Reviewed By: nemanjai, shchenz
Differential Revision: https://reviews.llvm.org/D105094
There are some patterns involving the permuted scalar to vector node
for which we don't have patterns without direct moves on little endian
subtargets. This causes selection errors. While we can of course add
the missing patterns, any additional effort to make this work is not
useful since there is no support for any CPU that can run in
little endian mode and does not support direct moves.
Adding usage of VSSRC and VSFRC when adding the live in registers on AIX.
This matches the behaviour of the rest of PPC Subtargets.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D104396
The combine was disabled in 4e22c7265d as it caused failures in
the ppc64be-multistage (bootstrap) bot.
It turns out that the combine did not correctly update the MMO for
the high load which caused aliased stores to be reported as unaliased.
This patch fixes that problem and re-enables the combine.
This patch implaments the load and reserve and store conditional
builtins for the PowerPC target, in order to have feature parody with
xlC on AIX.
Differential revision: https://reviews.llvm.org/D105236
Allocate non-volatile registers in order to be compatible with ABI, regarding gpr_save.
Quoted from https://www.ibm.com/docs/en/ssw_aix_72/assembler/assembler_pdf.pdf page55,
> The preferred method of using GPRs is to use the volatile registers first. Next, use the nonvolatile registers
> in descending order, starting with GPR31.
This patch is based on @jsji 's initial draft.
Tested on test-suite and SPEC, found no degradation.
Reviewed By: jsji, ZarkoCA, xingxue
Differential Revision: https://reviews.llvm.org/D100167
This patch changes return type of tryCandidate from void to bool:
1. Methods in some targets already follow this convention.
2. This would help if some target wants to re-use generic code.
3. It looks more intuitive if these try-method returns the same type.
We may need to change return type of them from bool to some enum
further, to make it less confusing.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D103951
Summary:
in the patch https://reviews.llvm.org/D103651 [AIX][XCOFF] generate eh_info when vector registers are saved according to the traceback table.
when generate eh_info, it switch to other section, when it done, it need to switch back to text section again.
Reviewers: Jason Liu
Differential Revision: https://reviews.llvm.org/105195
On PowerPC, VSRpRC represents the pairs of even and odd VSX register,
and VRRC corresponds to higher 32 VSX registers. In some cases, extra
copies are produced when handling incoming VRRC arguments with VSRpRC.
This patch changes allocation order of VSRpRC to eliminate this kind of
copy.
Stack frame sizes may increase if allocating non-volatile registers, and
some other vector copies happen. They need fix in future changes.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D104855
Commit 0464586ac5 added a combine
for a 64-bit load feeding a bswap but the implementation is only
correct for little endian systems.
This fixes it for big endian systems.
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
When targeting CPUs that don't have LDBRX, we end up producing code that is
very inefficient and large for this common idiom. This patch just
optimizes it two 32-bit LWBRX instructions along with a merge.
This fixes https://bugs.llvm.org/show_bug.cgi?id=49610
Differential revision: https://reviews.llvm.org/D104836
Summary:
generate eh_info when vector registers are saved according to the traceback table.
struct eh_info_t {
unsigned version; /* EH info version 0 */
#if defined(64BIT)
char _pad[4]; /* padding */
#endif
unsigned long lsda; /* Pointer to Language Specific Data Area */
unsigned long personality; /* Pointer to the personality routine */
};
the value of lsda and personality is zero when the number of vector registers saved is large zero and there is not personality of the function
Reviewers: Jason Liu
Differential Revision: https://reviews.llvm.org/D103651