The 'rol Rd' instruction is equivalent to 'adc Rd'.
This caused compile warnings from tablegen because of conflicting bits
shared between each instruction.
llvm-svn: 341275
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
This sets trackLivenessAfterRegAlloc on AVRRegisterInfo.
Most existing targets set this flag. Without it, specific IR inputs
cause LLVM to fail with:
Assertion failed: (getParent()->getProperties().hasProperty( MachineFunctionProperties::Property::TracksLiveness) &&
"Liveness information is accurate"), function livein_begin
file MachineBasicBlock.cpp, line 1354.
With this commit, this no longer happens.
Patch by Peter Nimmervoll.
llvm-svn: 334409
With this we gain a little flexibility in how the generic object
writer is created.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47045
llvm-svn: 332868
To make this work I needed to add an endianness field to MCAsmBackend
so that writeNopData() implementations know which endianness to use.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47035
llvm-svn: 332857
The idea is that a client that wants split dwarf would create a
specific kind of object writer that creates two files, and use it to
create the streamer.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47050
llvm-svn: 332749
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
They were added in r285274, in what looks like a merge mishap.
AVRGenMCCodeEmitter.inc is the only non-dupe tablegen invocation added in that
revision.
Also sort the tablegen lines to make this easier to spot in the future.
llvm-svn: 329178
This patch adds i128 division support by instruction LLVM to lower
128-bit divisions to the __udivmodti4 and __divmodti4 rtlib functions.
This also adds test for 64-bit division and 128-bit division.
Patch by Peter Nimmervoll.
llvm-svn: 327814
Before I started maintaining the AVR backend, this instruction
never originally used to have an earlyclobber flag.
Some time afterwards (years ago), I must've added it back in, not realising that it
was left out for a reason.
This pseudo instrction exists solely to work around a long standing bug
in the register allocator.
Before this commit, the LDDWRdYQ pseudo was not actually working around
any bug. With the earlyclobber flag removed again, the LDDWRdYQ pseudo
now correctly works around PR13375 again.
llvm-svn: 326774
This adds the program memory address space setting to the AVR data
layout.
This setting was very recently added under r325479.
At the moment, there are no uses of this setting. In the future, things
such as switch lookup tables should reside there.
llvm-svn: 325481
The parseFunctionArgs() method was directly reading the
arguments from a Function object, but is should have used the
arguments supplied by the SelectionDAGBuilder.
This was causing
the lowering code to only lower one argument, not two in some cases.
Thanks to @brainlag on GitHub for coming up with the working fix!
Patch-by: @brainlag on GitHub
llvm-svn: 325474
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
Summary:
This relaxes an assertion inside SelectionDAGBuilder which is overly
restrictive on targets which have no concept of alignment (such as AVR).
In these architectures, all types are aligned to 8-bits.
After this, LLVM will only assert that accesses are aligned on targets
which actually require alignment.
This patch follows from a discussion on llvm-dev a few months ago
http://llvm.1065342.n5.nabble.com/llvm-dev-Unaligned-atomic-load-store-td112815.html
Reviewers: bogner, nemanjai, joerg, efriedma
Reviewed By: efriedma
Subscribers: efriedma, cactus, llvm-commits
Differential Revision: https://reviews.llvm.org/D39946
llvm-svn: 320243
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
This adds debug tracing to the table-generated assembly instruction matcher,
enabled by the -debug-only=asm-matcher option.
The changes in the target AsmParsers are to add an MCInstrInfo reference under
a consistent name, so that we can use it from table-generated code. This was
already being used this way for targets that use deprecation warnings, but 5
targets did not have it, and Hexagon had it under a different name to the other
backends.
llvm-svn: 315445
Previously, on long branches (relative jumps of >4 kB), an assertion
failure was hit, as AVRInstrInfo::insertIndirectBranch was not
implemented. Despite its name, it is called by the branch relaxator
for *all* unconditional jumps.
Patch by Thomas Backman.
llvm-svn: 314891
In some cases, the code generator attempts to generate instructions such as:
lddw r24, Y+63
which expands to:
ldd r24, Y+63
ldd r25, Y+64 # Oops! This is actually ld r25, Y in the binary
This commit limits the first offset to 62, and thus the second to 63.
It also updates some asserts in AVRExpandPseudoInsts.cpp, including for
INW and OUTW, which appear to be unused.
Patch by Thomas Backman.
llvm-svn: 314890
This was an oversight in the original backend data layout.
The AVR architecture does not have the concept of unaligned loads - all
loads/stores from all addresses are aligned to one byte.
Discovered in avr-rust issue #64https://github.com/avr-rust/rust/issues/64
Patch By Gergo Erdi.
llvm-svn: 314179
This fixes the avr-rust issue (#75) with floating-point comparisons generating broken code.
By default, LLVM assumes these comparisons return 32-bit values, but ours are 8-bit.
Patch By Thomas Backman.
llvm-svn: 314070
Also enables '__do_clear_bss'.
These functions are automaticalled called by the CRT if they are
declared.
We need these to be called otherwise RAM will start completely
uninitialised, even though we need to copy RAM variables from progmem to
RAM.
llvm-svn: 312905
The liveness-tracking code assumes that the registers that were saved
in the function's prolog are live outside of the function. Specifically,
that registers that were saved are also live-on-exit from the function.
This isn't always the case as illustrated by the LR register on ARM.
Differential Revision: https://reviews.llvm.org/D36160
llvm-svn: 310619
The patch from r310028 fixed things to work with the new
`LLVMTargetMachine` constructor that came in on r309911.
However, the fix was partial since an object of type
`CodeModel::Model` must be passed to `LLVMTargetMachine`
(not one of `Optional<CodeModel::Model>`).
This patch fixes the problem in the same fashion that r309911
did for other machines: by checking if the passed optional
code model has a value and using `CodeModel::Small` if not.
llvm-svn: 310200
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
We should rewrite this using the generic branch relaxation pass, but for
the moment having this pass is better than hitting an assertion error.
llvm-svn: 307109
Previously, if a basic block ended with a FRMIDX instruction, we would
end up doing something like this.
*std::next(MBB.end())
Which would hit an error:
"Assertion `!NodePtr->isKnownSentinel()' failed."
llvm-svn: 307057
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This adds a callback to the LLVMTargetMachine that lets target indicate
that they do not pass the machine verifier checks in all cases yet.
This is intended to be a temporary measure while the targets are fixed
allowing us to enable the machine verifier by default with
EXPENSIVE_CHECKS enabled!
Differential Revision: https://reviews.llvm.org/D33696
llvm-svn: 304320
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
Summary: CPI does not read the status register, but only writes it.
Reviewers: dylanmckay
Reviewed By: dylanmckay
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33223
llvm-svn: 304116
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Because it was a callee-saved register, we automatically generated code
to spill and unspill its original value so that it is restored after the
function returns.
The problem is that this code was being generated before the epilogue.
The epilogue itself uses the Y register, which could be prematurely
restored by the CSR restoration process.
This removes R29R28 from the CSR list and changes the prologue/epilogue
code to handle it explicitly.
llvm-svn: 301887
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
r298178 capitalized the fields in `ArgListEntry`. All the official
targets were updated accordingly, but as an experimental target AVR
was missed.
llvm-svn: 298677
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
It is sufficient to skip emission of these arguments as we have nothing
to actually pass through the function call.
The AVR-GCC reference has nothing to say about zero-sized arguments,
presumably because C/C++ doesn't support them. This means we don't have
to worry about ABI differences.
llvm-svn: 294119
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
Summary:
This pass will be used to relax instructions which use out of bounds
memory accesses to equivalent operations that can work with the
addresses.
The pass currently implements relaxation for the STDWPtrQRr instruction.
Without this pass, an assertion error would be hit in the pseudo expansion pass.
In the future, we will need to add more instructions to this pass. We can do
that on a case-by-case basic.
Reviewers: arsenm, kparzysz
Subscribers: wdng, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27650
llvm-svn: 289517
There was a bug where we would hit an assertion if 'Q' was used as a
constraint.
I also removed hardcoded register names to prefer regexes so the tests
don't break when the register allocator changes.
llvm-svn: 289325
Summary: This gets rid of the hardcoded 'r0' that was used previously.
Reviewers: asl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27567
llvm-svn: 289322
These should've been checking whether the immediate is a 6-bit unsigned
integer.
If the immediate was '63', this would cause an assertion error which
shouldn't have occurred.
llvm-svn: 289315
We could previously select an integer which would hit an assertion error
in pseudo expansion.
The new type will also generate the appropriate fixups if needed, which
wasn't done beforehand.
llvm-svn: 289192
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
Summary:
A lot of the pseudo instructions are required because LLVM assumes that
all integers of the same size as the pointer size are legal. This means
that it will not currently expand 16-bit instructions to their 8-bit
variants because it thinks 16-bit types are legal for the operations.
This also adds all of the CodeGen tests that required the pass to run.
Reviewers: arsenm, kparzysz
Subscribers: wdng, mgorny, modocache, llvm-commits
Differential Revision: https://reviews.llvm.org/D26577
llvm-svn: 287162
As it stands, the OperandMatchResultTy is only included in the generated
header if there is custom operand parsing. However, almost all backends
make use of MatchOperand_Success and friends from OperandMatchResultTy for
e.g. parseRegister. This is a pain when starting an AsmParser for a new
backend that doesn't yet have custom operand parsing. Move the enum to
MCTargetAsmParser.h.
This patch is a prerequisite for D23563
Differential Revision: https://reviews.llvm.org/D23496
llvm-svn: 285705
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
llvm-svn: 285006
Once MULHS was expanded, this exposed an issue where the condition
register was thought to be 16-bit. This caused an attempt to copy a
16-bit register to an 8-bit register.
Authored by Jake Goulding
llvm-svn: 283634
Summary:
This class deals with the lowering of CodeGen `MachineInstr` objects to
MC `MCInst` objects.
Reviewers: kparzysz, arsenm
Subscribers: wdng, beanz, japaric, mgorny
Differential Revision: https://reviews.llvm.org/D25269
llvm-svn: 283522
Summary:
This adds the AVR machine code backend (`AVRAsmBackend.cpp`). This will
allow us to generate machine code from assembled AVR instructions.
Reviewers: arsenm, kparzysz
Subscribers: modocache, japaric, wdng, beanz, mgorny
Differential Revision: https://reviews.llvm.org/D25029
llvm-svn: 283297
Summary:
This change adds the AVR assembly instruction printer.
No tests are included in this patch. I have left them downstream so we can
add them once `llc` successfully runs (there's very few components left
to upstream until this).
Reviewers: arsenm, kparzysz
Subscribers: wdng, beanz, mgorny
Differential Revision: https://reviews.llvm.org/D25028
llvm-svn: 282854
Summary:
This adds the AVRMCTargetDesc file in tree. It allows creation of the
core classes used in the backend.
Reviewers: arsenm, kparzysz
Subscribers: wdng, beanz, mgorny
Differential Revision: https://reviews.llvm.org/D25023
llvm-svn: 282597
The previous data layout caused issues when dealing with atomics.
Foe example, it is illegal to load a 16-bit value with less than 16-bits
of alignment.
This changes the data layout so that all types are aligned by at least
their own width.
Interestingly, this also _slightly_ decreased register pressure in some
cases.
llvm-svn: 282587
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
This adds a target hook getInstSizeInBytes to TargetInstrInfo that a lot of
subclasses already implement.
Differential Revision: https://reviews.llvm.org/D22885
llvm-svn: 277126
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
It defined the LLVM_AVR_GCC_COMPAT constant, which would enable/disable
certain GCC-specific behaviours.
There is no point conditionally turning it on/off, as it will always be
turned on, and we have to maintain both code paths anyway.
llvm-svn: 269904