Running isl tests is important to gain confidence that the isl build we created
works as expected. Besides the actual isl tests, there are also isl AST
generation tests shipped with isl. This change only adds support for the isl
unit tests. AST generation test support is left for a later commit.
There is a choice to run tests directly through the build system or in the
context of lit. We choose to run tests as part of lit to as this allows us to
easily set environment variables, print output only on error and generally run
the tests directly from the lit command.
Reviewers: brad.king, Meinersbur
Subscribers: modocache, brad.king, pollydev, beanz, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D25155
llvm-svn: 283245
With this option one can disable the heuristic that assumes that statements with
a scalar write access cannot be profitably optimized. Such a statement instances
necessarily have WAW-dependences to itself. With DeLICM scalar accesses can be
changed to array accesses, which can avoid these WAW-dependence.
llvm-svn: 283233
ScopArrayInfo used to determine base pointer origins by looking up whether the
base pointer is a load. The "base pointer" for scalar accesses is the
llvm::Value being accessed. This is only a symbolic base pointer, it
represents the alloca variable (.s2a or .phiops) generated for it at code
generation.
This patch disables determining base pointer origin for scalars.
A test case where this caused a crash will be added in the next commit. In that
test SAI tried to get the origin base pointer that was only declared later,
therefore not existing. This is probably only possible for scalars used in
PHINode incoming blocks.
llvm-svn: 283232
Summary:
Both `canUseISLTripCount()` and `addOverApproximatedRegion()` contained checks
to reject endless loops which are now removed and replaced by a single check
in `isValidLoop()`.
For reporting such loops the `ReportLoopOverlapWithNonAffineSubRegion` is
renamed to `ReportLoopHasNoExit`. The test case
`ReportLoopOverlapWithNonAffineSubRegion.ll` is adapted and renamed as well.
The schedule generation in `buildSchedule()` is based on the following
assumption:
Given some block B that is contained in a loop L and a SESE region R,
we assume that L is contained in R or the other way around.
However, this assumption is broken in the presence of endless loops that are
nested inside other loops. Therefore, in order to prevent erroneous behavior
in `buildSchedule()`, r265280 introduced a corresponding check in
`canUseISLTripCount()` to reject endless loops. Unfortunately, it was possible
to bypass this check with -polly-allow-nonaffine-loops which was fixed by adding
another check to reject endless loops in `allowOverApproximatedRegion()` in
r273905. Hence there existed two separate locations that handled this case.
Thank you Johannes Doerfert for helping to provide the above background
information.
Reviewers: Meinersbur, grosser
Subscribers: _jdoerfert, pollydev
Differential Revision: https://reviews.llvm.org/D24560
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 281987
In case sequential kernels are found deeper in the loop tree than any parallel
kernel, the overall scop is probably mostly sequential. Hence, run it on the
CPU.
llvm-svn: 281849
Offloading to a GPU is only beneficial if there is a sufficient amount of
compute that can be accelerated. Many kernels just have a very small number
of dynamic compute, which means GPU acceleration is not beneficial. We
compute at run-time an approximation of how many dynamic instructions will be
executed and fall back to CPU code in case this number is not sufficiently
large. To keep the run-time checking code simple, we over-approximate the
number of instructions executed in each statement by computing the volume of
the rectangular hull of its iteration space.
llvm-svn: 281848
We may generate GPU kernels that store into scalars in case we run some
sequential code on the GPU because the remaining data is expected to already be
on the GPU. For these kernels it is important to not keep the scalar values
in thread-local registers, but to store them back to the corresponding device
memory objects that backs them up.
We currently only store scalars back at the end of a kernel. This is only
correct if precisely one thread is executed. In case more than one thread may
be run, we currently invalidate the scop. To support such cases correctly,
we would need to always load and store back from a corresponding global
memory slot instead of a thread-local alloca slot.
llvm-svn: 281838
Our alias checks precisely check that the minimal and maximal accessed elements
do not overlap in a kernel. Hence, we must ensure that our host <-> device
transfers do not touch additional memory locations that are not covered in
the alias check. To ensure this, we make sure that the data we copy for a
given array is only the data from the smallest element accessed to the largest
element accessed.
We also adjust the size of the array according to the offset at which the array
is actually accessed.
An interesting result of this is: In case array are accessed with negative
subscripts ,e.g., A[-100], we automatically allocate and transfer _more_ data to
cover the full array. This is important as such code indeed exists in the wild.
llvm-svn: 281611
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform copying to created
arrays, which is the last step to implement the packing transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23260
llvm-svn: 281441
We do not need the size of the outermost dimension in most cases, but if we
allocate memory for newly created arrays, that size is needed.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23991
llvm-svn: 281234
Instead of aborting, we now bail out gracefully in case the kernel IR we
generate is invalid. This can currently happen in case the SCoP stores
pointer values, which we model as arrays, as data values into other arrays. In
this case, the original pointer value is not available on the device and can
consequently not be stored. As detecting this ahead of time is not so easy, we
detect these situations after the invalid IR has been generated and bail out.
llvm-svn: 281193
If these arrays have never been accessed we failed to derive an upper bound
of the accesses and consequently a size for the outermost dimension. We
now explicitly check for empty access sets and then just use zero as size
for the outermost dimension.
llvm-svn: 281165
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
The check-polly-tests target runs regression/unit tests but without checking
formatting. This is useful to not having to reload a file in an open editor
(which eg. clears the undo buffer, moves cursor/window position) when running
polly-update-format.
After this change, the following test targets exist:
- check-polly-unittests to run unittests only
- check-polly-tests to run unit and regression tests
- polly-check-format to check formatting using clang-format
- check-polly to run them all
As a side-effect, when running check-polly, polly-check-format and run in
parallel (instead of polly-check-format first).
Differential Revision: https://reviews.llvm.org/D24191
llvm-svn: 280654
Change the code around setNewAccessRelation to allow to use a an existing array
element for memory instead of an ad-hoc alloca. This facility will be used for
DeLICM/DeGVN to convert scalar dependencies into regular ones.
The changes necessary include:
- Make the code generator use the implicit locations instead of the alloca ones.
- A test case
- Make the JScop importer accept changes of scalar accesses for that test case.
- Adapt the MemoryAccess interface to the fact that the MemoryKind can change.
They are named (get|is)OriginalXXX() to get the status of the memory access
before any change by setNewAccessRelation() (some properties such as
getIncoming() do not change even if the kind is changed and are still
required). To get the modified properties, there is (get|is)LatestXXX(). The
old accessors without Original|Latest become synonyms of the
(get|is)OriginalXXX() to not make functional changes in unrelated code.
Differential Revision: https://reviews.llvm.org/D23962
llvm-svn: 280408
Add the infrastructure for unittests to Polly and two simple tests for
conversion between isl_val and APInt. In addition, a build target
check-polly-unittests is added to run only the unittests but not the regression
tests.
Clang's unittest mechanism served as as a blueprint which then was adapted to
Polly.
Differential Revision: https://reviews.llvm.org/D23833
llvm-svn: 279734
configure_lit_site_cfg defines some more parameters that are used in
lit.site.cfg.in. configure_file would leave those empty. These additional
definitions seem to be unimportant for regression tests, but unittests do not
work without them.
In case of out-of-tree builds, define the additional parameters with default
values. These may not take all configuration parameters into account, as
configure_lit_site_cfg would.
llvm-svn: 279733
Dump polyhedral descriptions of Scops optimized with the isl scheduling
optimizer and the set of post-scheduling transformations applied
on the schedule tree to be able to check the work of the IslScheduleOptimizer
pass at the polyhedral level.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23740
llvm-svn: 279395
The existing code would add the operands in the wrong order, and eventually
crash because the SCEV expression doesn't exactly match the parameter SCEV
expression in SCEVAffinator::visit. (SCEV doesn't sort the operands to
getMulExpr in general.)
Differential Revision: https://reviews.llvm.org/D23592
llvm-svn: 279087
We already invalidated a couple of critical values earlier on, but we now
invalidate all instructions contained in a scop after the scop has been code
generated. This is necessary as later scops may otherwise obtain SCEV
expressions that reference values in the earlier scop that before dominated
the later scop, but which had been moved into the conditional branch and
consequently do not dominate the later scop any more. If these very values are
then used during code generation of the later scop, we generate used that are
dominated by the values they use.
This fixes: http://llvm.org/PR28984
llvm-svn: 279047
Normally this is ensured when adding PHI nodes, but as PHI node dependences
do not need to be added in case all incoming blocks are within the same
non-affine region, this was missed.
This corrects an issue visible in LNT's sqlite3, in case invariant load hoisting
was disabled.
llvm-svn: 278792
This will make it easier to switch the default of Polly's invariant load
hoisting strategy and also makes it very clear that these test cases
indeed require invariant code hoisting to work.
llvm-svn: 278667
This is the third patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform replacement of
the access relations and create empty arrays, which are steps to implement
the packing transformation. In subsequent changes we will implement copying
to created arrays.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D22187
llvm-svn: 278666
To do so we change the way array exents are computed. Instead of the precise
set of memory locations accessed, we now compute the extent as the range between
minimal and maximal address in the first dimension and the full extent defined
by the sizes of the inner array dimensions.
We also move the computation of the may_persist region after the construction
of the arrays, as it relies on array information. Without arrays being
constructed no useful information is computed at all.
llvm-svn: 278212
Ensure the right scalar allocations are used as the host location of data
transfers. For the device code, we clear the allocation cache before device
code generation to be able to generate new device-specific allocation and
we need to make sure to add back the old host allocations as soon as the
device code generation is finished.
llvm-svn: 278126
This increases the readability of the IR and also clarifies that the GPU
inititialization is executed _after_ the scalar initialization which needs
to before the code of the transformed scop is executed.
Besides increased readability, the IR should not change. Specifically, I
do not expect any changes in program semantics due to this patch.
llvm-svn: 278125
In case some code -- not guarded by control flow -- would be emitted directly in
the start block, it may happen that this code would use uninitalized scalar
values if the scalar initialization is only emitted at the end of the start
block. This is not a problem today in normal Polly, as all statements are
emitted in their own basic blocks, but Polly-ACC emits host-to-device copy
statements into the start block.
Additional Polly-ACC test coverage will be added in subsequent changes that
improve the handling of PHI nodes in Polly-ACC.
llvm-svn: 278124
After having generated the code for a ScopStmt, we run a simple dead-code
elimination that drops all instructions that are known to be and remain unused.
Until this change, we only considered instructions for dead-code elimination, if
they have a corresponding instruction in the original BB that belongs to
ScopStmt. However, when generating code we do not only copy code from the BB
belonging to a ScopStmt, but also generate code for operands referenced from BB.
After this change, we now also considers code for dead code elimination, which
does not have a corresponding instruction in BB.
This fixes a bug in Polly-ACC where such dead-code referenced CPU code from
within a GPU kernel, which is possible as we do not guarantee that all variables
that are used in known-dead-code are moved to the GPU.
llvm-svn: 278103
When adding code that avoids to pass values used in isl expressions and
LLVM instructions twice, we forgot to make single variable passed to the
kernel available in the ValueMap that makes it usable for instructions that
are not replaced with isl ast expressions. This change adds the variable
that is passed to the kernel to the ValueMap to ensure it is available
for such use cases as well.
llvm-svn: 278039
Before this commit we generated the array type in reverse order and we also
added the outermost dimension size to the new array declaration, which is
incorrect as Polly additionally assumed an additional unsized outermost
dimension, such that we had an off-by-one error in the linearization of access
expressions.
llvm-svn: 277802
These annotations ensure that the NVIDIA PTX assembler limits the number of
registers used such that we can be certain the resulting kernel can be executed
for the number of threads in a thread block that we are planning to use.
llvm-svn: 277799
Pass the content of scalar array references to the alloca on the kernel side
and do not pass them additional as normal LLVM scalar value.
llvm-svn: 277699
Otherwise, we would try to re-optimize them with Polly-ACC and possibly even
generate kernels that try to offload themselves, which does not work as the
GPURuntime is not available on the accelerator and also does not make any
sense.
llvm-svn: 277589
Extend the jscop interface to allow the user to export arrays. It is required
that already existing arrays of the list of arrays correspond to arrays
of the SCoP. Each array that is appended to the list will be newly created.
Furthermore, we allow the user to modify access expressions to reference
any array in case it has the same element type.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D22828
llvm-svn: 277263
Before this change we used the array index, which would result in us accessing
the parameter array out-of-bounds. This bug was visible for test cases where not
all arrays in a scop are passed to a given kernel.
llvm-svn: 276961
Adding a new pass PolyhedralInfo. This pass will be the interface to Polly.
Initially, we will provide the following interface:
- #IsParallel(Loop *L) - return a bool depending on whether the loop is
parallel or not for the given program order.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D21486
llvm-svn: 276637
Also factor out getArraySize() to avoid code dupliciation and reorder some
function arguments to indicate the direction into which data is transferred.
llvm-svn: 276636
At the beginning of each SCoP, we allocate device arrays for all arrays
used on the GPU and we free such arrays after the SCoP has been executed.
llvm-svn: 276635
Do not process SCoPs with infeasible runtime context in the new
ScopInfoWrapperPass. Do not compute dependences for such SCoPs in the new
DependenceInfoWrapperPass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D22402
llvm-svn: 276631
This is the second patch to apply the BLIS matmul optimization pattern
on matmul kernels
(http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus
two packing routines. The macro-kernel is implemented in terms
of two additional loops around a micro-kernel. The micro-kernel
is a loop around a rank-1 (i.e., outer product) update. In this change
we create the BLIS macro-kernel by applying a combination of tiling
and interchanging. In subsequent changes we will implement the packing
transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D21491
llvm-svn: 276627
There is no need to expose the selected device at the moment. We also pass back
pointers as return values, as this simplifies the interface.
llvm-svn: 276623
Run the NVPTX backend over the GPUModule IR and write the resulting assembly
code in a string.
To work correctly, it is important to invalidate analysis results that still
reference the IR in the kernel module. Hence, this change clears all references
to dominators, loop info, and scalar evolution.
Finally, the NVPTX backend has troubles to generate code for various special
floating point types (not surprising), but also for uncommon integer types. This
commit does not resolve these issues, but pulls out problematic test cases into
separate files to XFAIL them individually and resolve them in future (not
immediate) changes one by one.
llvm-svn: 276396
This change introduces the actual compute code in the GPU kernels. To ensure
all values referenced from the statements in the GPU kernel are indeed available
we scan all ScopStmts in the GPU kernel for references to llvm::Values that
are not yet covered by already modeled outer loop iterators, parameters, or
array base pointers and also pass these additional llvm::Values to the
GPU kernel.
For arrays used in the GPU kernel we introduce a new ScopArrayInfo object, which
is referenced by the newly generated access functions within the GPU kernel and
which is used to help with code generation.
llvm-svn: 276270
This ensures that no trivially dead code is generated. This is not only cleaner,
but also avoids troubles in case code is generated in a separate function and
some of this dead code contains references to values that are not available.
This issue may happen, in case the memory access functions have been updated
and old getelementptr instructions remain in the code. With normal Polly,
a test case is difficult to draft, but the upcoming GPU code generation can
possibly trigger such problems. We will later extend this dead-code elimination
to region and vector statements.
llvm-svn: 276263
It seems the order in which we generated memory accesses changed such that
the import of these updated memory accesses failed for the 'loop3' statement
in this test case. Unfortunately, the existing CHECK lines were not strict
enough to catch this. Hence, besides fixing the order of the memory access
lines we also ensure that the memory access changes are both clearly visibly
and well checked.
llvm-svn: 276247
This is currently not supported and will only be added later. Also update the
test cases to ensure no invariant code hoisting is applied.
llvm-svn: 275987
We use this opportunity to further classify the different user statements that
can arise and add TODOs for the ones not yet implemented.
llvm-svn: 275957
Create for each kernel a separate LLVM-IR module containing a single function
marked as kernel function and taking one pointer for each array referenced
by this kernel. Add debugging output to verify the kernels are generated
correctly.
llvm-svn: 275952
Initialize the list of references to a GPU array to ensure that the arrays that
need to be passed to kernel calls are computed correctly. Furthermore, the very
same information is also necessary to compute synchronization correctly. As the
functionality to compute these references is already available, what is left for
us to do is only to connect the necessary functionality to compute array
reference information.
llvm-svn: 275798
Create LLVM-IR for all host-side control flow of a given GPU AST. We implement
this by introducing a new GPUNodeBuilder class derived from IslNodeBuilder. The
IslNodeBuilder will take care of generating all general-purpose ast nodes, but
we provide our own createUser implementation to handle the different GPU
specific user statements. For now, we just skip any user statement and only
generate a host-code sceleton, but in subsequent commits we will add handling of
normal ScopStmt's performing computations, kernel calls, as well as host-device
data transfers. We will also introduce run-time check generation and LICM in
subsequent commits.
llvm-svn: 275783
Otherwise ppcg would try to call into pet functionality that this not available,
which obviously will cause trouble. As we can easily print these statements
ourselves, we just do so.
llvm-svn: 275579
This option increases the scalability of the scheduler and allows us to remove
the 'gisting' workaround we introduced in r275565 to handle a more complicated
test case. Another benefit of using this option is also that the generated
code looks a lot more streamlined.
Thanks to Sven Verdoolaege for reminding me of this option.
llvm-svn: 275573
This works around a shortcoming of the isl scheduler, which even for some
smaller test cases does not terminate in case domain constraints are part
of the flow dependences.
llvm-svn: 275565
Arrays with integer base type are similar to arrays with floating point types,
with the exception that LLVM's integer types can take some odd values. We
add a selection of different values to make sure we correctly round these
types when necessary.
References to scalar integer types are special, as we currently do not model
these types as array accesses as they are considered 'synthesizable' by Polly.
As a result, we do not generate explicit data-transfers for them, but instead
will need to keep track of all references to 'synthesizable' values separately.
At the current stage, this is only visible by missing host-to-device
data-transfer calls. In the future, we will also require special code generation
strategies.
llvm-svn: 275551
We currently only test that the code structure we generate for these scalar
parameters is correct and we add these types to make sure later code generation
additions have sufficient test coverage.
In case some of these types cannot be mapped due to missing hardware support
on the GPU some of these test cases may need to be updated later on.
llvm-svn: 275548
A sequence of CHECK lines allows additional statements to appear in the
output of the tested program without any test failures appearing. As we do
not want this to happen, switch this test case to use CHECK-NEXT.
llvm-svn: 275534
For this we need to provide an explicit list of statements as they occur in
the polly::Scop to ppcg.
We also setup basic AST printing facilities to facilitate debugging. To allow
code reuse some (minor) changes in ppcg are have been necessary.
llvm-svn: 275436
The tile size was previously uninitialized. As a result, it was often zero (aka.
no tiling), which is not what we want in general. More importantly, there was
the risk for arbitrary tile sizes to be choosen, which we did not observe, but
which still is highly problematic.
llvm-svn: 275418
This change now applies ppcg's GPU mapping on our initial schedule. For this
to work, we need to also initialize the set of all names (isl_ids) used in
the scop as well as the program context.
llvm-svn: 275396
To do so we copy the necessary information to compute an initial schedule from
polly::Scop to ppcg's scop. Most of the necessary information is directly
available and only needs to be passed on to ppcg, with the exception of 'tagged'
access relations, access relations that additionally carry information about
which memory access an access relation originates from.
We could possibly perform the construction of tagged accesses as part of
ScopInfo, but as this format is currently specific to ppcg we do not do this
yet, but keep this functionality local to our GPU code generation.
After the scop has been initialized, we compute data dependences and ask ppcg to
compute an initial schedule. Some of this functionality is already available in
polly::DependenceInfo and polly::ScheduleOptimizer, but to keep differences
to ppcg small we use ppcg's functionality here. We may later investiage if
a closer integration of these tools makes sense.
llvm-svn: 275390
At this stage, we do not yet modify the IR but just generate a default
initialized ppcg_scop and gpu_prog and free both immediately. Both will later be
filled with data from the polly::Scop and are needed to use PPCG for GPU
schedule generation. This commit does not yet perform any GPU code generation,
but ensures that the basic infrastructure has been put in place.
We also add a simple test case to ensure the new code is run and use this
opportunity to verify that GPU_CODEGEN tests are only run if GPU code generation
has been enabled in cmake.
llvm-svn: 275389
Check not only that the compiler is not crashing, but also whether the
probablematic part (The sequence of instructions simplified to '4') is reflected
in the output.
Thanks to Tobias for the hint.
llvm-svn: 275189
An assertion in visitSDivInstruction() checked whether the divisor is constant
by checking whether the argument is a ConstantInt. However, SCEVValidator allows
the divisor to be simplified to a constant by ScalarEvolution.
We synchronize the implementation of SCEVValidator and SCEVAffinator to both
accept simplified SCEV expressions.
llvm-svn: 275174
For llvm the memory accesses from nonaffine loops should be visible,
however for polly those nonaffine loops should be invisible/boxed.
This fixes llvm.org/PR28245
Cointributed-by: Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D21591
llvm-svn: 274842
Reject and report regions that contains loops overlapping nonaffine region.
This situation typically happens in the presence of inifinite loops.
This addresses bug llvm.org/PR28071.
Differential Revision: http://reviews.llvm.org/D21312
Contributed-by: Huihui Zhang <huihuiz@codeaurora.org>
llvm-svn: 273905
This patch addresses:
- A new function pass to compute polyhedral dependences. This is
required to avoid the region pass manager.
- Stores a map of Scop to Dependence object for all the scops present
in a function. By default, access wise dependences are stored.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D21105
llvm-svn: 273881
This patch adds a new function pass ScopInfoWrapperPass so that the
polyhedral description of a region, the SCoP, can be constructed and
used in a function pass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20962
llvm-svn: 273856
This is the first patch to apply the BLIS matmul optimization pattern
on matmul kernels
(http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel,
plus two packing routines. The macro-kernel is implemented in terms
of two additional loops around a micro-kernel. The micro-kernel
is a loop around a rank-1 (i.e., outer product) update.
In this change we create the BLIS micro-kernel by applying
a combination of tiling and unrolling. In subsequent changes
we will add the extraction of the BLIS macro-kernel
and implement the packing transformation.
Contributed-by: Roman Gareev <gareevroman@gmail.com>
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D21140
llvm-svn: 273397
With this update the isl AST generation extracts disjunctive constraints early
on. As a result, code that previously resulted in two branches with (close-to)
identical code within them:
if (P <= -1) {
for (int c0 = 0; c0 < N; c0 += 1)
Stmt_store(c0);
} else if (P >= 1)
for (int c0 = 0; c0 < N; c0 += 1)
Stmt_store(c0);
results now in only a single branch body:
if (P <= -1 || P >= 1)
for (int c0 = 0; c0 < N; c0 += 1)
Stmt_store(c0);
This resolves http://llvm.org/PR27559
Besides the above change, this isl update brings better simplification of
sets/maps containing existentially quantified dimensions and fixes a bug in
isl's coalescing.
llvm-svn: 272500
As these test cases will be changed in a subsequent commit, we expand and
tighten them to make the subsequent changes to them more obvious. As part of
this we add more context to some test cases and add CHECK-NEXT lines to ensure
no intermediate lines are missed by accident.
llvm-svn: 272499
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
This patch was originally contributed by Johannes Doerfert in r271888, but was
in conflict with the revert in r272483. This is a recommit with some minor
adjustment to the test cases to take care of differing instruction names.
llvm-svn: 272485
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
This patch refactors the code generation for divisions. This allows to
always generate a shift for a power-of-two division and to utilize
information about constant divisors in order to truncate the result
type.
llvm-svn: 271898
We now generate runtime checks __after__ the SCoP code generation and
not before, though they are still inserted at the same position int
the code. This allows to modify the runtime check during SCoP code
generation.
llvm-svn: 271894
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
llvm-svn: 271888
We now use the minimal necessary bit width for the generated code. If
operations might overflow (add/sub/mul) we will try to adjust the types in
order to ensure a non-wrapping computation. If the type adjustment is not
possible, thus the necessary type is bigger than the type value of
--polly-max-expr-bit-width, we will use assumptions to verify the computation
will not wrap. However, for run-time checks we cannot build assumptions but
instead utilize overflow tracking intrinsics.
llvm-svn: 271878
In case of modulo compared to zero, we need to do signed modulo
operation as unsigned can give different results based on whether the
dividend is negative or not.
This addresses llvm.org/PR27707
Contributed-by: Chris Jenneisch <chrisj@codeaurora.org>
Reviewers: _jdoerfert, grosser, Meinersbur
Differential Revision: http://reviews.llvm.org/D20145
llvm-svn: 271707
Operands of binary operations that might overflow will be temporarily
promoted to i64 again, though that is not a sound solution for the problem.
llvm-svn: 271538
Summary:
After rL271151 (SCEV change) SCEV no longer unconditionally transfers
nuw/nsw from the increment operation to the post-inc value; this
transfer only happens if there is undefined behavior in the program if
the increment overflowed (as opposed to just generating poison).
The loops in `wraping_signed_expr_1.ll` are in non-canonical
form (they're not rotated), and that defeats LLVM's poison-is-UB
analysis. IMO the easiest fix here is to run `wraping_signed_expr_1.ll`
through `-loop-rotate` to canonicalize the loops, which is what this
patch does.
Reviewers: jdoerfert, Meinersbur, grosser
Subscribers: grosser, mcrosier, pollydev
Differential Revision: http://reviews.llvm.org/D20778
llvm-svn: 271536
We now have a simple function to adjust/unify the types of two (or three)
operands before an operation that requieres the same type for all operands.
Due to this change we will not promote parameters that are added to i64
anymore if that is not needed.
llvm-svn: 271513
multiplication
Fix small issues related to characters, operators and descriptions of tests.
Differential Revision: http://reviews.llvm.org/D20806
llvm-svn: 271264
Add determination of statements that contain, in particular,
matrix multiplications and can be optimized with [1] to try to
get close-to-peak performance. It can be enabled
via polly-pm-based-opts, which is false by default.
Refs:
[1] - http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf
Contributed-by: Roman Gareev <gareevroman@gmail.com>
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D20575
llvm-svn: 271128
Before this patch we bailed if a required invariant load was potentially
overwritten. However, now we will optimistically assume it is actually
invariant and, to this end, restrict the valid parameter space as well as the
execution context with regards to potential overwrites of the location.
llvm-svn: 270416
Since the base pointer of a possibly aliasing pointer might not alias
with any other pointer it (the base pointer) might not be tagged as
"required invariant". However, we need it do be in order to compare
the accessed addresses of the derived (possibly aliasing) pointer.
This patch also tries to clean up the load hoisting a little bit.
llvm-svn: 270412
So far we bailed if a required invariant load was potentially overwritten in
the SCoP. From now on we will optimistically assume it is actually invariant
and, to this end, restrict the valid parameter space.
llvm-svn: 270060
This patch cleans up the rejection log handling during the
ScopDetection. It consists of two interconnected parts:
- We keep all detection contexts for a function in order to provide
more information to the user, e.g., about the rejection of
extended/intermediate regions.
- We remove the mutable "RejectLogs" member as the information is
available through the detection contexts.
llvm-svn: 269323
Truncate operations are basically modulo operations, thus we can model
them that way. However, for large types we assume the operand to fit
in the new type size instead of introducing a modulo with a very large
constant.
llvm-svn: 269300
We utilize assumptions on the input to model IR in polyhedral world.
To verify these assumptions we version the code and guard it with a
runtime-check (RTC). However, since the RTCs are themselves generated
from the polyhedral representation we generate them under the same
assumptions that they should verify. In other words, the guarantees
that we try to provide with the RTCs do not hold for the RTCs
themselves. To this end it is necessary to employ a different check
for the RTCs that will verify the assumptions did hold for them too.
Differential Revision: http://reviews.llvm.org/D20165
llvm-svn: 269299
If a profitable run is performed we will check if the SCoP seems to be
profitable after creation but before e.g., dependence are computed. This is
needed as SCoP detection only approximates the actual SCoP representation.
In the end this should allow us to be less conservative during the SCoP
detection while keeping the compile time in check.
llvm-svn: 269074
Regions with one affine loop can be profitable if the loop is
distributable. To this end we will allow them to be treated as
profitable if they contain at least two non-trivial basic blocks.
llvm-svn: 269064
The assumption attached to an llvm.assume in the SCoP needs to be
combined with the domain of the surrounding statement but can
nevertheless be used to refine the context.
This fixes the problems mentioned in PR27067.
llvm-svn: 269060
This patches makes the propagation of complexity problems during
domain generation consistent. Additionally, it makes it less likely to
encounter ill-formed domains later, e.g., during schedule generation.
llvm-svn: 269055
Before this patch we generated error-restrictions only for
error-blocks, thus blocks (or regions) containing a not represented
function call. However, the same reasoning is needed if the invalid
domain of a statement subsumes its actual domain. To this end we move
the generation of error-restrictions after the propagation of the
invalid domains. Consequently, error-statements are now defined more
general as statements that are assumed to be not executed.
Additionally, we do not record an empty domain for such statements but
a nullptr instead. This allows to distinguish between error-statements
and dead-statements.
llvm-svn: 269053