This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 274043
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 273892
This patch begins adding support for lowering to the XOP VPERMIL2PD/VPERMIL2PS shuffle instructions - adding the X86ISD::VPERMIL2 opcode and cleaning up the usage.
The internal llvm intrinsics were assuming the shuffle mask operand was the same type as the float/double input operands (I guess to simplify the intrinsic definitions in X86InstrXOP.td to a single value type). These needed changing to integer types (matching the clang builtin and the AMD intrinsics definitions), an auto upgrade path is added to convert old calls.
Mask decoding/target shuffle support will be added in future patches.
Differential Revision: http://reviews.llvm.org/D20049
llvm-svn: 271633
This patch removes the llvm intrinsics (V)CVTTPS2DQ and VCVTTPD2DQ truncation (round to zero) conversions and auto-upgrades to FP_TO_SINT calls instead.
Note: I looked at updating CVTTPD2DQ as well but this still requires a lot more work to correctly lower.
Differential Revision: http://reviews.llvm.org/D20860
llvm-svn: 271510
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
Reapplied now that the the companion patch (D20684) removes/auto-upgrade the clang intrinsics has been committed.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 271131
This patch removes the llvm intrinsics VPMOVSX and (V)PMOVZX sign/zero extension intrinsics and auto-upgrades to SEXT/ZEXT calls instead. We already did this for SSE41 PMOVSX sometime ago so much of that implementation can be reused.
A companion patch (D20684) removes/auto-upgrade the clang intrinsics.
Differential Revision: http://reviews.llvm.org/D20686
llvm-svn: 270973
When we have "Image Info Version" module flag but don't have "Class Properties"
module flag, set "Class Properties" module flag to 0, so we can correctly emit
errors when one module has the flag set and another module does not.
rdar://26469641
llvm-svn: 270791
Followup to D20528 clang patch, this removes the (V)CVTDQ2PD(Y) and (V)CVTPS2PD(Y) llvm intrinsics and auto-upgrades to sitofp/fpext instead.
Differential Revision: http://reviews.llvm.org/D20568
llvm-svn: 270678
Both AArch64 and ARM support llvm.<arch>.thread.pointer intrinsics that
just return the thread pointer. I have a pending patch that does the same
for SystemZ (D19054), and there are many more targets that could benefit
from one.
This patch merges the ARM and AArch64 intrinsics into a single target
independent one that will also be used by subsequent targets.
Differential Revision: http://reviews.llvm.org/D19098
llvm-svn: 266818
This is a resubmittion of 263158 change.
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 266086
This is a cleanup patch for SSP support in LLVM. There is no functional change.
llvm.stackprotectorcheck is not needed, because SelectionDAG isn't
actually lowering it in SelectBasicBlock; rather, it adds check code in
FinishBasicBlock, ignoring the position where the intrinsic is inserted
(See FindSplitPointForStackProtector()).
llvm-svn: 265851
Remove logic to upgrade !llvm.loop by changing the MDString tag
directly. This old logic would check (and change) arbitrary strings
that had nothing to do with loop metadata. Instead, check !llvm.loop
attachments directly, and change which strings get attached.
Rather than updating the assembly-based upgrade, drop it entirely. It
has been quite a while since we supported upgrading textual IR.
llvm-svn: 264373
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 263158
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
XOP has the VPCMOV instruction that performs the common vector bit select operation OR( AND( SRC1, SRC3 ), AND( SRC2, ~SRC3 ) )
This patch adds tablegen pattern matching for this instruction.
Differential Revision: http://reviews.llvm.org/D8841
llvm-svn: 251975
Stop converting implicitly between iterators and pointers/references in
lib/IR. For convenience, I've added a `getIterator()` accessor to
`ilist_node` so that callers don't need to know how to spell the
iterator class (i.e., they can use `X.getIterator()` instead of
`Function::iterator(X)`).
I'll eventually disallow these implicit conversions entirely, but
there's a lot of code, so it doesn't make sense to do it all in one
patch. One library or so at a time.
Why? To root out cases of `getNextNode()` and `getPrevNode()` being
used in iterator logic. The design of `ilist` makes that invalid when
the current node could be at the back of the list, but it happens to
"work" right now because of a bug where those functions never return
`nullptr` if you're using a half-node sentinel. Before I can fix the
function, I have to remove uses of it that rely on it misbehaving.
(Maybe the function should just be deleted anyway? But I don't want
deleting it -- potentially a huge project -- to block fixing
ilist/iplist.)
llvm-svn: 249782
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D12985
llvm-svn: 248887
This patches removes the x86.sse41.pmovsx* intrinsics, provides a suitable upgrade path and updates relevant tests to sign extend a subvector instead.
LLVM counterpart to D12835
Differential Revision: http://reviews.llvm.org/D13002
llvm-svn: 248368
We used to accept (and even test, and generate) 16-byte alignment
for 32-byte nontemporal stores, but they require 32-byte alignment,
per SDM. Found by inspection.
Instead of hardcoding 16 in the patfrag, check for natural alignment.
Also fix the autoupgrade and the various tests.
Also, use explicit -mattr instead of -mcpu: I stared at the output
several minutes wondering why I get 2x movntps for the unaligned
case (which is the ideal output, but needs some work: see FIXME),
until I remembered corei7-avx implies +slow-unaligned-mem-32.
llvm-svn: 246733
Since r245605, the clang headers don't use these anymore.
r245165 updated some of the tests already; update the others, add
an autoupgrade, remove the intrinsics, and cleanup the definitions.
Differential Revision: http://reviews.llvm.org/D10555
llvm-svn: 245606
Summary:
Looking at r241279, I noticed that UpgradedIntrinsics only gets written
to in the following code:
if (UpgradeIntrinsicFunction(&F, NewFn))
UpgradedIntrinsics[&F] = NewFn;
Looking through UpgradeIntrinsicFunction, we always return false OR
NewFn will be set to a different function from our source.
This patch pulls the F != NewFn into UpgradeIntrinsicFunction as an
assert, and removes the check from callers of UpgradeIntrinsicFunction.
Reviewers: rafael, chandlerc
Subscribers: llvm-commits-list
Differential Revision: http://reviews.llvm.org/D10915
llvm-svn: 241369
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.
This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.
llvm-svn: 237810
Added intrinsics for the instructions. CC parameter of the intrinsics was changed from i8 to i32 according to the spec.
By Igor Breger (igor.breger@intel.com)
llvm-svn: 236714
This upgrade of `@llvm.dbg.declare` and `@llvm.dbg.value` isn't useful,
since it's for an old debug info version. The calls will get stripped
anyway by `UpgradeDebugInfo()`.
llvm-svn: 234181
This should complete the job started in r231794 and continued in r232045:
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the removal of insert/extract128 intrinsics.
The Clang precursor patch for this change was checked in at r232109.
llvm-svn: 232120
This is a convenience function to ease mask creation of ShuffleVectors
in AutoUpgrade and other places.
Differential Revision: http://reviews.llvm.org/D8184
llvm-svn: 232047
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
This is very much like D8086 (checked in at r231794):
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is also the LLVM sibling to the cfe D8275 patch.
Differential Revision: http://reviews.llvm.org/D8276
llvm-svn: 232045
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the Clang half of this change:
http://reviews.llvm.org/D8088
Differential Revision: http://reviews.llvm.org/D8086
llvm-svn: 231794
The intrinsic is no longer generated by the front-end. Remove the intrinsic and
auto-upgrade it to a vector shuffle.
Reviewed by Nadav
This is related to rdar://problem/18742778.
llvm-svn: 231182
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
llvm-svn: 221024
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
llvm-svn: 217310
An optional third field was added to `llvm.global_ctors` (and
`llvm.global_dtors`) in r209015. Most of the code has been changed to
deal with both versions of the variables. Users of the C API might
create either version, the helper functions in LLVM create the two-field
version, and clang now creates the three-field version.
However, the BitcodeReader was changed to always upgrade to the
three-field version. This created an unnecessary inconsistency in the
IR before/after serializing to bitcode.
This commit resolves the inconsistency by making the third field truly
optional (and not upgrading in the bitcode reader). Since `llvm-link`
was relying on this upgrade code, rather than deleting it I've moved it
into `ModuleLinker`, where it upgrades these arrays as necessary to
resolve inconsistencies between modules.
The ideal resolution would be to remove the 2-field version and make the
third field required. I filed PR20506 to track that.
I changed `test/Bitcode/upgrade-global-ctors.ll` to a negative test and
duplicated the `llvm-link` check in `test/Linker/global_ctors.ll` to
check both upgrade directions.
Since I came across this as part of PR5680 (serializing use-list order),
I've also added the missing `verify-uselistorder` RUN line to
`test/Bitcode/metadata-2.ll`.
llvm-svn: 215457
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211710
They are replaced with the same IR that is generated for the
vector-initializers in avxintrin.h.
The test verifies that we get back the original instruction. I haven't seen
this approach to be used in other auto-upgrade tests (i.e. llc + FileCheck)
but I think it's the most direct way to test this case. I believe this should
work because llc upgrades calls during parsing. (Other tests mostly check
that assembling and disassembling yields the upgraded IR.)
llvm-svn: 209863
This allows us to put dynamic initializers for weak data into the same
comdat group as the data being initialized. This is necessary for MSVC
ABI compatibility. Once we have comdats for guard variables, we can use
the combination to help GlobalOpt fire more often for weak data with
guarded initialization on other platforms.
Reviewers: nlewycky
Differential Revision: http://reviews.llvm.org/D3499
llvm-svn: 209015
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
Add a helper function getDebugInfoVersionFromModule to return the debug info
version number for a module.
"Verifier/module-flags-1.ll" checks for verification errors.
It will seg fault when calling getDebugInfoVersionFromModule because of the
incorrect format for module flags in the testing case. We make
getModuleFlagsMetadata more robust by checking for error conditions.
PR17982
llvm-svn: 196158
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
llvm-svn: 171359