Fixes the issue highlighted in
http://lists.llvm.org/pipermail/cfe-dev/2014-June/037500.html.
The DW_AT_decl_file and DW_AT_decl_line attributes on namespaces can
prevent LLVM from uniquing types that are in the same namespace. They
also don't carry any meaningful information.
rdar://problem/17484998
Differential Revision: https://reviews.llvm.org/D32648
llvm-svn: 301706
For Swift we would like to be able to encode the error types that a
function may throw, so the debugger can display them alongside the
function's return value when finish-ing a function.
DWARF defines DW_TAG_thrown_type (intended to be used for C++ throw()
declarations) that is a perfect fit for this purpose. This patch wires
up support for DW_TAG_thrown_type in LLVM by adding a list of thrown
types to DISubprogram.
To offset the cost of the extra pointer, there is a follow-up patch
that turns DISubprogram into a variable-length node.
rdar://problem/29481673
Differential Revision: https://reviews.llvm.org/D32559
llvm-svn: 301489
This should simplify the call sites, which typically want to tweak one
attribute at a time. It should also avoid creating ephemeral
AttributeLists that live forever.
llvm-svn: 300718
This seems like a much more natural API, based on Derek Schuff's
comments on r300015. It further hides the implementation detail of
AttributeList that function attributes come last and appear at index
~0U, which is easy for the user to screw up. git diff says it saves code
as well: 97 insertions(+), 137 deletions(-)
This also makes it easier to change the implementation, which I want to
do next.
llvm-svn: 300153
Summary:
For now, it just wraps AttributeSetNode*. Eventually, it will hold
AvailableAttrs as an inline bitset, and adding and removing enum
attributes will be super cheap.
This sinks AttributeSetNode back down to lib/IR/AttributeImpl.h.
Reviewers: pete, chandlerc
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D31940
llvm-svn: 300014
This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
llvm-svn: 299899
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
llvm-svn: 299875
-ffp-contract=fast does not currently work with LTO because it's passed as a
TargetOption to the backend rather than in the IR. This adds it to
FastMathFlags.
This is toward fixing PR25721
Differential Revision: https://reviews.llvm.org/D31164
llvm-svn: 298939
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
The constantexpr parsing was too constrained and rejected legal vector GEPs.
This relaxes it to be similar to the ones for instruction parsing.
This fixes PR30816.
Differential Revision: https://reviews.llvm.org/D28013
llvm-svn: 290261
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
This should prevent stack overflows in non-optimized builds on
.ll files with lots of consecutive commented-out lines.
Instead of recursing into LexToken(), continue into a 'while (true)'.
llvm-svn: 287170
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.
This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html
Differential Revision: https://reviews.llvm.org/D22793
llvm-svn: 286514
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
In futher patches we shall have alignment field added to DIVariable family
and switching from uint64_t to uint32_t will save 4 bytes per variable.
Differential Revision: https://reviews.llvm.org/D25620
llvm-svn: 284482
The Register Calling Convention (RegCall) was introduced by Intel to optimize parameter transfer on function call.
This calling convention ensures that as many values as possible are passed or returned in registers.
This commit presents the basic additions to LLVM CodeGen in order to support RegCall in X86.
Differential Revision: http://reviews.llvm.org/D25022
llvm-svn: 284108
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
If TBAA is on an intrinsic and it gets upgraded, it'll delete the call
instruction that we collected in a vector. Even if we were to use
WeakVH, it'll drop the TBAA and we'll hit the assert on the upgrade
path.
r263673 gave a shot to make sure the TBAA upgrade happens before
intrinsics upgrade, but failed to account for all cases.
Instead of collecting instructions in a vector, this patch makes it
just upgrade the TBAA on the fly, because metadata are always
already loaded at this point.
Differential Revision: https://reviews.llvm.org/D24533
llvm-svn: 281549
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280700
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
* Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
* Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280686
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279650
We should not use double (or float) in the LLVM, unless it is really needed. x87 FP register doesn't preserve SNaN to move the value.
FIXME: APFloat() may have the constructor by raw bit.
llvm-svn: 277813
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
llvm-svn: 274485
Summary:
This represents the adjustment applied to the implicit 'this' parameter
in the prologue of a virtual method in the MS C++ ABI. The adjustment is
always zero unless multiple inheritance is involved.
This increases the size of DISubprogram by 8 bytes, unfortunately. The
adjustment really is a signed 32-bit integer. If this size increase is
too much, we could probably win it back by splitting out a subclass with
info specific to virtual methods (virtuality, vindex, thisadjustment,
containingType).
Reviewers: aprantl, dexonsmith
Subscribers: aaboud, amccarth, llvm-commits
Differential Revision: http://reviews.llvm.org/D21614
llvm-svn: 274325