Handle MSVC, ISL and PPCG in one place. The only functional change is that
warnings are also disabled for MSVC compiling PPCG (Which currently fails
anyway).
llvm-svn: 283547
Folders in Visual Studio solutions help organize the build artifacts from all
LLVM projects. There is a folder to keep Polly-built files in.
llvm-svn: 283546
Running isl tests is important to gain confidence that the isl build we created
works as expected. Besides the actual isl tests, there are also isl AST
generation tests shipped with isl. This change only adds support for the isl
unit tests. AST generation test support is left for a later commit.
There is a choice to run tests directly through the build system or in the
context of lit. We choose to run tests as part of lit to as this allows us to
easily set environment variables, print output only on error and generally run
the tests directly from the lit command.
Reviewers: brad.king, Meinersbur
Subscribers: modocache, brad.king, pollydev, beanz, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D25155
llvm-svn: 283245
With this option one can disable the heuristic that assumes that statements with
a scalar write access cannot be profitably optimized. Such a statement instances
necessarily have WAW-dependences to itself. With DeLICM scalar accesses can be
changed to array accesses, which can avoid these WAW-dependence.
llvm-svn: 283233
ScopArrayInfo used to determine base pointer origins by looking up whether the
base pointer is a load. The "base pointer" for scalar accesses is the
llvm::Value being accessed. This is only a symbolic base pointer, it
represents the alloca variable (.s2a or .phiops) generated for it at code
generation.
This patch disables determining base pointer origin for scalars.
A test case where this caused a crash will be added in the next commit. In that
test SAI tried to get the origin base pointer that was only declared later,
therefore not existing. This is probably only possible for scalars used in
PHINode incoming blocks.
llvm-svn: 283232
This function may need to be called after the scop construction. The upcoming
DeLICM will use this to cleanup statement that all write accesses have been
removed from.
llvm-svn: 283221
Currently Polly cannot generate code for index expressions if the base pointer
is computed within the scop. The base pointer must be generated as well, but
there is no code that triggers that.
Add an assertion to detect when this would occur and miscompile. The IR verifier
should catch it as well.
llvm-svn: 282893
Add missing __isl_(give/take/keep) annotations to IslPtr<> and NonowningIslPtr<>
methods.
Because IslPtr's constructor's annotation would depend on the TakeOwnership
parameter, the parameter has been removed. Caller must copy the object
themselves if the do not want to take ownership.
llvm-svn: 282883
gcc 5.4 insists on template specialization to be in a namespace polly { ... }
block, instead of being prefixed with 'polly::'. Error message:
root/src/llvm/tools/polly/lib/Support/GICHelper.cpp:203:54: error: specialization of ‘template<class T> void polly::IslPtr<T>::dump() const’ in different namespace [-fpermissive]
template <> void polly::IslPtr<isl_##TYPE>::dump() const { \
^
msvc14 and clang 3.8 did not complain.
llvm-svn: 282874
The dump() methods can be called from a debugger instead of e.g.
isl_*_dump(Var.Obj)
where Var is a variable of type IslPtr/NonowningIslPtr. To ensure that the
existence of the function pointers do not depdend on whether the methods are
used somwhere, they are declared with external linkage.
llvm-svn: 282870
Add a non-NULL check before calling the free function into functions that are
supposed to be inlined. First, this is a form of partial inlining of the free
function, namely the nullptr test that free has to do. Secondly, and more
importantly, it allows the compiler to remove the call to isl_*_free() when it
knows that the object is nullptr, for instance because the last call is a
take(). "Consuming" the last use of an ISL object using take()
(instead of copy()) is a common pattern.
llvm-svn: 282864
generateScalarLoad() and generateScalarStore() are used for explicit (MK_Array)
memory accesses, therefore the method names were misleading. The names also
were similar to generateScalarLoads() and generateScalarStores() (plural forms)
which indeed handle scalar accesses. Presumbly, they were originally named to
contrast VectorBlockGenerator::generateLoad().
Rename the two methods to generateArrayLoad(),
respectively generateArrayStore().
llvm-svn: 282861
The code generator always adds unconditional LoadInst and StoreInst, hence the
MemoryAccess must be defined over all statement instances.
llvm-svn: 282853
Summary:
Both `canUseISLTripCount()` and `addOverApproximatedRegion()` contained checks
to reject endless loops which are now removed and replaced by a single check
in `isValidLoop()`.
For reporting such loops the `ReportLoopOverlapWithNonAffineSubRegion` is
renamed to `ReportLoopHasNoExit`. The test case
`ReportLoopOverlapWithNonAffineSubRegion.ll` is adapted and renamed as well.
The schedule generation in `buildSchedule()` is based on the following
assumption:
Given some block B that is contained in a loop L and a SESE region R,
we assume that L is contained in R or the other way around.
However, this assumption is broken in the presence of endless loops that are
nested inside other loops. Therefore, in order to prevent erroneous behavior
in `buildSchedule()`, r265280 introduced a corresponding check in
`canUseISLTripCount()` to reject endless loops. Unfortunately, it was possible
to bypass this check with -polly-allow-nonaffine-loops which was fixed by adding
another check to reject endless loops in `allowOverApproximatedRegion()` in
r273905. Hence there existed two separate locations that handled this case.
Thank you Johannes Doerfert for helping to provide the above background
information.
Reviewers: Meinersbur, grosser
Subscribers: _jdoerfert, pollydev
Differential Revision: https://reviews.llvm.org/D24560
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 281987
In case sequential kernels are found deeper in the loop tree than any parallel
kernel, the overall scop is probably mostly sequential. Hence, run it on the
CPU.
llvm-svn: 281849
Offloading to a GPU is only beneficial if there is a sufficient amount of
compute that can be accelerated. Many kernels just have a very small number
of dynamic compute, which means GPU acceleration is not beneficial. We
compute at run-time an approximation of how many dynamic instructions will be
executed and fall back to CPU code in case this number is not sufficiently
large. To keep the run-time checking code simple, we over-approximate the
number of instructions executed in each statement by computing the volume of
the rectangular hull of its iteration space.
llvm-svn: 281848
We may generate GPU kernels that store into scalars in case we run some
sequential code on the GPU because the remaining data is expected to already be
on the GPU. For these kernels it is important to not keep the scalar values
in thread-local registers, but to store them back to the corresponding device
memory objects that backs them up.
We currently only store scalars back at the end of a kernel. This is only
correct if precisely one thread is executed. In case more than one thread may
be run, we currently invalidate the scop. To support such cases correctly,
we would need to always load and store back from a corresponding global
memory slot instead of a thread-local alloca slot.
llvm-svn: 281838
Our alias checks precisely check that the minimal and maximal accessed elements
do not overlap in a kernel. Hence, we must ensure that our host <-> device
transfers do not touch additional memory locations that are not covered in
the alias check. To ensure this, we make sure that the data we copy for a
given array is only the data from the smallest element accessed to the largest
element accessed.
We also adjust the size of the array according to the offset at which the array
is actually accessed.
An interesting result of this is: In case array are accessed with negative
subscripts ,e.g., A[-100], we automatically allocate and transfer _more_ data to
cover the full array. This is important as such code indeed exists in the wild.
llvm-svn: 281611
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform copying to created
arrays, which is the last step to implement the packing transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23260
llvm-svn: 281441
This line makes BUILD_SHARED_LIBS=ON work for Polly-ACC. Without it, ld
complains about missing isl symbols when constructing the shared library.
llvm-svn: 281396
The alias to the array element is read-only and a primitive type (pointer),
therefore use the value directly instead of a reference to it.
llvm-svn: 281311
The flag -fvisibility=hidden flag was used for the integrated Integer
Set Library (and PPCG) to keep their definitions local to Polly. The
motivation was the be loaded into a DragonEgg-powered GCC, where GCC
might itself use ISL for its Graphite extension. The symbols of Polly's
ISL and GCC's ISL would clash.
The DragonEgg project is not actively developed anymore, but Polly's
unittests need to call ISL functions to set up a testing environment.
Unfortunately, the -fvisibility=hidden flag means that the ISL symbols
are not available to the gtest executable as it resides outside of
libPolly when linked dynamically. Currently, CMake links a second copy
of ISL into the unittests which leads to subtle bugs. What got observed
is that two isl_ids for isl_id_none exist, one for each library
instance. Because isl_id's are compared by address, isl_id_none could
happen to be different from isl_id_none, depending on which library
instance set the address and does the comparison.
Also remove the FORCE_STATIC flag which was introduced to keep the ISL
symbols visible inside the same libPolly shared object, even when build
with BUILD_SHARED_LIBS.
Differential Revision: https://reviews.llvm.org/D24460
llvm-svn: 281242
We do not need the size of the outermost dimension in most cases, but if we
allocate memory for newly created arrays, that size is needed.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23991
llvm-svn: 281234
Instead of aborting, we now bail out gracefully in case the kernel IR we
generate is invalid. This can currently happen in case the SCoP stores
pointer values, which we model as arrays, as data values into other arrays. In
this case, the original pointer value is not available on the device and can
consequently not be stored. As detecting this ahead of time is not so easy, we
detect these situations after the invalid IR has been generated and bail out.
llvm-svn: 281193
If these arrays have never been accessed we failed to derive an upper bound
of the accesses and consequently a size for the outermost dimension. We
now explicitly check for empty access sets and then just use zero as size
for the outermost dimension.
llvm-svn: 281165
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
... to preserve reference counting logic.
In practice the missing assignment would not have caused any issues. We still
fix it as the code is wrong and it also causes noise in the clang static
analysis runs.
llvm-svn: 280946
When running the clang static analyser to check for memory issues, this code
originally showed a double free, as the analyser was unable to understand that
isl_set_free always returns NULL and consequently later uses of the isl object
we just freed will never be reached. Without this knowledge, the analyser has
to issue a warning.
We refactor the code to make it clear that for empty maps the current loop
iteration is aborted.
llvm-svn: 280940
When running the clang static analyser to check for memory issues, this code
originally showed a double free, as the analyser was unable to understand that
isl_union_map_free always returns NULL and consequently later uses of the isl
object we just freed will never be reached. Without this knowledge, the analyser
has to issue a warning.
We refactor the code to make it clear that for empty maps the current loop
iteration is aborted.
llvm-svn: 280938
Disable some Visual C++ warnings on ISL. These are not reported by GCC/Clang in
the ISL build system. We do not intend to fix them in the Polly in-tree copy,
hence disable these warnings.
llvm-svn: 280811
The check-polly-tests target runs regression/unit tests but without checking
formatting. This is useful to not having to reload a file in an open editor
(which eg. clears the undo buffer, moves cursor/window position) when running
polly-update-format.
After this change, the following test targets exist:
- check-polly-unittests to run unittests only
- check-polly-tests to run unit and regression tests
- polly-check-format to check formatting using clang-format
- check-polly to run them all
As a side-effect, when running check-polly, polly-check-format and run in
parallel (instead of polly-check-format first).
Differential Revision: https://reviews.llvm.org/D24191
llvm-svn: 280654
... but instead rely on the assumptions that we derive for load/store
instructions.
Before we were able to delinearize arrays, we used GEP pointer instructions
to derive information about the likely range of induction variables, which
gave us more freedom during loop scheduling. Today, this is not needed
any more as we delinearize multi-dimensional memory accesses and as part
of this process also "assume" that all accesses to these arrays remain
inbounds. The old derive-assumptions-from-GEP code has consequently become
mostly redundant. We drop it both to clean up our code, but also to improve
compile time. This change reduces the scop construction time for 3mm in
no-asserts mode on my machine from 48 to 37 ms.
llvm-svn: 280601
Without reductions we do not need a flat union_map schedule describing
the computation we want to perform, but can work purely on the schedule
tree. This reduces the dependence computation and scheduling time from 33ms
to 25ms. Another 30% reduction.
llvm-svn: 280558
In case we do not compute reduction dependences or dependences that are more
fine-grained than statement level dependences, we can avoid the corresponding
part of the dependence analysis all together. For the 3mm benchmark, this
reduces scheduling + dependence analysis time from 62ms to 33ms for a no-asserts
build. The majority of the compile time is anyhow spent in the LLVM backends,
when doing code generation. Nevertheless, there is no need to waste compile time
either.
llvm-svn: 280557
We replace the options
-polly-code-generator=none
=isl
with the options
-polly-code-generation=none
=ast
=full
This allows us to measure the overhead of Polly itself, versus the compile
time increases due to us generating more IR and consequently the LLVM backends
spending more time on this IR.
We also use this opportunity to rename the option. The original name was
introduced at a point where we still had two code generators. CLooG and the
isl AST generator. Since we only have one AST generator left, there is no need
to distinguish between 'isl' and something else. However, being able to disable
code generation all together has been shown useful for debugging. Hence, we
rename and extend this option to make it a good fit for its new use case.
llvm-svn: 280554
LLVM's coding guideline suggests to not use @brief for one-sentence doxygen
comments to improve readability. Switch this once and for all to ensure people
do not copy @brief comments from other parts of Polly, when writing new code.
llvm-svn: 280468
Change the code around setNewAccessRelation to allow to use a an existing array
element for memory instead of an ad-hoc alloca. This facility will be used for
DeLICM/DeGVN to convert scalar dependencies into regular ones.
The changes necessary include:
- Make the code generator use the implicit locations instead of the alloca ones.
- A test case
- Make the JScop importer accept changes of scalar accesses for that test case.
- Adapt the MemoryAccess interface to the fact that the MemoryKind can change.
They are named (get|is)OriginalXXX() to get the status of the memory access
before any change by setNewAccessRelation() (some properties such as
getIncoming() do not change even if the kind is changed and are still
required). To get the modified properties, there is (get|is)LatestXXX(). The
old accessors without Original|Latest become synonyms of the
(get|is)OriginalXXX() to not make functional changes in unrelated code.
Differential Revision: https://reviews.llvm.org/D23962
llvm-svn: 280408
There are some constraints on maps that can be access relations. In builds with assertions enabled, verify
- The access domain is the same space as the statement's domain (modulo parameters).
- Whether an access is defined for every instance of the statement. (codegen does not yet support partial access relations)
- Whether the access range links to an array, represented by a ScopArrayInfo.
- The number of access dimensions equals the dimensions of the array.
- The array is not an indirect access. (also not supported by codegen)
Differential Revision: https://reviews.llvm.org/D23916
llvm-svn: 280404
isl_val_int_from_ui takes an 'unsigned long' which has on 32-bit and LLP64
windows systems only 32 bit. Hence, make sure we do not use it with constants
that are larger than 32 bit.
Reported-by: Michael Kruse <llvm@meinersbur.de>
llvm-svn: 279824
This improves the readability of failing test results, as gtest prints always
the first argument as the 'expected value'.
In the previous commit we already changed the tests for isl_valFromAPInt. In
this commit, the tests for IslValToAPInt follow.
Suggested-by: Michael Kruse <llvm@meinersbur.de>
llvm-svn: 279817
The recent unit tests we gained made clear that the semantics of
isl_valFromAPInt are not clear, due to missing documentation. In this change we
document both the calling interface as well as the implementation of
isl_valFromAPInt.
We also make the implementation easier to read by removing integer wrappig in
abs() when passing in the minimal integer value for a given bitwidth. Even
though wrapping and subsequently interpreting the result as unsigned value gives
the correct result, this is far from obvious. Instead, we explicitly add one
more bit to the input type to ensure that abs will never wrap. This change did
not uncover a bug in the old implementation, but was introduced to increase
readability.
We update the tests to add a test case for this special case and use this
opportunity to also test a number larger than 64 bit. Finally, we order the
arguments of the test cases to make sure the expected output is first. This
helps readability in case of failing test cases as gtest assumes the first value
to be the exected value.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23917
llvm-svn: 279815
The recent unit tests we gained made clear that the semantics of APIntFromVal
are not clear, due to missing documentation. In this change we document both
the calling interface as well as the implementation of APIntFromVal. We also
make the implementation easier to read by removing the use of magic numbers.
Finally, we add tests to check the bitwidth of the created values as well as
the correct modeling of very large numbers.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23910
llvm-svn: 279813
Remove the unused function get_system_libs. Instead, run
'llvm-config --system-libs' to determine which libraries are required in
addition LLVM's for linking an executable. At the moment these are the unittests
that link to gtest and transitively depend on these system libs.
llvm-svn: 279743
Only build them for check-polly and check-polly-unittests in out-of-tree builds.
In LLVM, this behaviour is controlled with LLVM_BUILD_TESTS. Polly out-of-tree
does not have such a flag.
llvm-svn: 279740
We cannot built ISL as shared object because we build it with
-fvisibility=hidden; The created shared object would have no accessible symbols.
The reason it is built with -fvisibility=hidden is because opt/clang might load
other libraries that have ISL embedded and whose' symbols would conflict with
Polly's private ISL. This could happend with Draggonegg.
In the future we might instead statically link PollyISL into the Polly shared
object to avoid installing the static library.
Requested-by: Vedran Miletic <vedran@miletic.net>
See-also: llvm.org/PR27306
llvm-svn: 279737
Add the infrastructure for unittests to Polly and two simple tests for
conversion between isl_val and APInt. In addition, a build target
check-polly-unittests is added to run only the unittests but not the regression
tests.
Clang's unittest mechanism served as as a blueprint which then was adapted to
Polly.
Differential Revision: https://reviews.llvm.org/D23833
llvm-svn: 279734
configure_lit_site_cfg defines some more parameters that are used in
lit.site.cfg.in. configure_file would leave those empty. These additional
definitions seem to be unimportant for regression tests, but unittests do not
work without them.
In case of out-of-tree builds, define the additional parameters with default
values. These may not take all configuration parameters into account, as
configure_lit_site_cfg would.
llvm-svn: 279733
This previously was not required because in an out-of-tree build Polly would
only build libraries (LLVMPolly, libPolly, libPollyISL, libPollyPPCG), but no
executables where the libraries would be linked to. This will change when adding
unittests in a follow-up commit.
llvm-svn: 279730
The program 'llvm-lit', like 'not' and 'FileCheck' are necessary for running
check-polly. Warn of any of the three is not in LLVM_INSTALL_ROOT/bin directory.
llvm-svn: 279728
Dump polyhedral descriptions of Scops optimized with the isl scheduling
optimizer and the set of post-scheduling transformations applied
on the schedule tree to be able to check the work of the IslScheduleOptimizer
pass at the polyhedral level.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23740
llvm-svn: 279395
getAccessFunctions() is dead code and the 'BB' argument
of getOrCreateAccessFunctions() is not used. This patch deletes
getAccessFunctions and transforms AccFuncMap into
a std::vector<std::unique_ptr<MemoryAccess>> AccessFunctions.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23759
llvm-svn: 279394
The existing code would add the operands in the wrong order, and eventually
crash because the SCEV expression doesn't exactly match the parameter SCEV
expression in SCEVAffinator::visit. (SCEV doesn't sort the operands to
getMulExpr in general.)
Differential Revision: https://reviews.llvm.org/D23592
llvm-svn: 279087
We already invalidated a couple of critical values earlier on, but we now
invalidate all instructions contained in a scop after the scop has been code
generated. This is necessary as later scops may otherwise obtain SCEV
expressions that reference values in the earlier scop that before dominated
the later scop, but which had been moved into the conditional branch and
consequently do not dominate the later scop any more. If these very values are
then used during code generation of the later scop, we generate used that are
dominated by the values they use.
This fixes: http://llvm.org/PR28984
llvm-svn: 279047
Normally this is ensured when adding PHI nodes, but as PHI node dependences
do not need to be added in case all incoming blocks are within the same
non-affine region, this was missed.
This corrects an issue visible in LNT's sqlite3, in case invariant load hoisting
was disabled.
llvm-svn: 278792
With invariant load hoisting enabled the LLVM buildbots currently show some
miscompiles, which are possibly caused by invariant load hosting itself.
Confirming and fixing this requires a more in-depth analysis. To meanwhile get
back green buildbots that allow us to observe other regressions, we disable
invariant code hoisting temporarily. The relevant bug is tracked at:
http://llvm.org/PR28985
llvm-svn: 278681
This will make it easier to switch the default of Polly's invariant load
hoisting strategy and also makes it very clear that these test cases
indeed require invariant code hoisting to work.
llvm-svn: 278667
This is the third patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform replacement of
the access relations and create empty arrays, which are steps to implement
the packing transformation. In subsequent changes we will implement copying
to created arrays.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D22187
llvm-svn: 278666
To do so we change the way array exents are computed. Instead of the precise
set of memory locations accessed, we now compute the extent as the range between
minimal and maximal address in the first dimension and the full extent defined
by the sizes of the inner array dimensions.
We also move the computation of the may_persist region after the construction
of the arrays, as it relies on array information. Without arrays being
constructed no useful information is computed at all.
llvm-svn: 278212
Ensure the right scalar allocations are used as the host location of data
transfers. For the device code, we clear the allocation cache before device
code generation to be able to generate new device-specific allocation and
we need to make sure to add back the old host allocations as soon as the
device code generation is finished.
llvm-svn: 278126
This increases the readability of the IR and also clarifies that the GPU
inititialization is executed _after_ the scalar initialization which needs
to before the code of the transformed scop is executed.
Besides increased readability, the IR should not change. Specifically, I
do not expect any changes in program semantics due to this patch.
llvm-svn: 278125
In case some code -- not guarded by control flow -- would be emitted directly in
the start block, it may happen that this code would use uninitalized scalar
values if the scalar initialization is only emitted at the end of the start
block. This is not a problem today in normal Polly, as all statements are
emitted in their own basic blocks, but Polly-ACC emits host-to-device copy
statements into the start block.
Additional Polly-ACC test coverage will be added in subsequent changes that
improve the handling of PHI nodes in Polly-ACC.
llvm-svn: 278124
After having generated the code for a ScopStmt, we run a simple dead-code
elimination that drops all instructions that are known to be and remain unused.
Until this change, we only considered instructions for dead-code elimination, if
they have a corresponding instruction in the original BB that belongs to
ScopStmt. However, when generating code we do not only copy code from the BB
belonging to a ScopStmt, but also generate code for operands referenced from BB.
After this change, we now also considers code for dead code elimination, which
does not have a corresponding instruction in BB.
This fixes a bug in Polly-ACC where such dead-code referenced CPU code from
within a GPU kernel, which is possible as we do not guarantee that all variables
that are used in known-dead-code are moved to the GPU.
llvm-svn: 278103
The function expandRegion() frees Region* objects again when it determines that
these are not valid SCoPs. However, the DetectionContext added to the
DetectionContextMap still holds a reference. The validity is checked using the
ValidRegions lookup table. When a new Region is added to that list, it might
share the same address, such that the DetectionContext contains two
Region* associations that are in ValidRegions, but that are unrelated and of
which one has already been free.
Also remove the DetectionContext when not a valid expansion.
llvm-svn: 278062
When adding code that avoids to pass values used in isl expressions and
LLVM instructions twice, we forgot to make single variable passed to the
kernel available in the ValueMap that makes it usable for instructions that
are not replaced with isl ast expressions. This change adds the variable
that is passed to the kernel to the ValueMap to ensure it is available
for such use cases as well.
llvm-svn: 278039
There is no need to reset the position of the builder, as we can just continue
to insert code at the current position of the IRBuilder, which happens to
be precisely the location we reset the builder to.
llvm-svn: 278014
... instead of adding instructions at the end of the basic block the builder
is currently at. This makes it easier to reason about where IR is generated,
as with the IRBuilder there is just a single location that specificies where
IR is generated.
llvm-svn: 278013
The map is iterated over when generating the values escaping the SCoP. The
indeterministic iteration order of DenseMap causes the output IR to change at
every compilation, adding noise to comparisons.
Replace DenseMap by a MapVector to ensure the same iteration order at every
compilation.
llvm-svn: 277832
When entering the dependence computation and the max_operations is set, the
operations counter may have already exceeded the counter, thus aborting any ISL
computation from the start. The counter is reset at the end of the dependence
calculation such that a follow-up recomputation might succeed, ie. the success
of the first dependence calculation depends on unrelated ISL operations that
happened before, giving it a disadvantage to the following calculations.
This patch resets the operations counter at the beginning of the dependence
recalculation to not depend on previous actions. Otherwise additional
preprocessing of the Scop that aims to improve its schedulability (eg. DeLICM)
do have the effect that DependenceInfo and hence the scheduling fail more
likely, contraproductive to the goal of said preprocessing.
llvm-svn: 277810
Before this commit we generated the array type in reverse order and we also
added the outermost dimension size to the new array declaration, which is
incorrect as Polly additionally assumed an additional unsized outermost
dimension, such that we had an off-by-one error in the linearization of access
expressions.
llvm-svn: 277802
These annotations ensure that the NVIDIA PTX assembler limits the number of
registers used such that we can be certain the resulting kernel can be executed
for the number of threads in a thread block that we are planning to use.
llvm-svn: 277799
Pass the content of scalar array references to the alloca on the kernel side
and do not pass them additional as normal LLVM scalar value.
llvm-svn: 277699
Otherwise, we would try to re-optimize them with Polly-ACC and possibly even
generate kernels that try to offload themselves, which does not work as the
GPURuntime is not available on the accelerator and also does not make any
sense.
llvm-svn: 277589
Extend the jscop interface to allow the user to export arrays. It is required
that already existing arrays of the list of arrays correspond to arrays
of the SCoP. Each array that is appended to the list will be newly created.
Furthermore, we allow the user to modify access expressions to reference
any array in case it has the same element type.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D22828
llvm-svn: 277263
Before this change we used the array index, which would result in us accessing
the parameter array out-of-bounds. This bug was visible for test cases where not
all arrays in a scop are passed to a given kernel.
llvm-svn: 276961
Adding a new pass PolyhedralInfo. This pass will be the interface to Polly.
Initially, we will provide the following interface:
- #IsParallel(Loop *L) - return a bool depending on whether the loop is
parallel or not for the given program order.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D21486
llvm-svn: 276637
Also factor out getArraySize() to avoid code dupliciation and reorder some
function arguments to indicate the direction into which data is transferred.
llvm-svn: 276636
At the beginning of each SCoP, we allocate device arrays for all arrays
used on the GPU and we free such arrays after the SCoP has been executed.
llvm-svn: 276635
This function is currently unused and won't be used in this form again. Instead
of freeing many unrelated items at the same time, we will instead explicitly
call free function from the host-IR we generate for each object we want to free.
These specific free functions will be added together with the corresponding
host-IR generation code.
llvm-svn: 276632
Do not process SCoPs with infeasible runtime context in the new
ScopInfoWrapperPass. Do not compute dependences for such SCoPs in the new
DependenceInfoWrapperPass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D22402
llvm-svn: 276631
This is the second patch to apply the BLIS matmul optimization pattern
on matmul kernels
(http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus
two packing routines. The macro-kernel is implemented in terms
of two additional loops around a micro-kernel. The micro-kernel
is a loop around a rank-1 (i.e., outer product) update. In this change
we create the BLIS macro-kernel by applying a combination of tiling
and interchanging. In subsequent changes we will implement the packing
transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D21491
llvm-svn: 276627
There is no need to expose the selected device at the moment. We also pass back
pointers as return values, as this simplifies the interface.
llvm-svn: 276623
This allows the finalization routine of the IslNodeBuilder to be overwritten
by derived classes. Being here, we also drop the unnecessary 'Scop' postfix
and the unnecessary 'Scop' parameter.
llvm-svn: 276622
Before this change, the debug statements in polly_initDevice would all be
skipped, as debug-mode would only be enabled _after_ they have already been run.
llvm-svn: 276621
This functionality won't be used in the current iteration. Drop it for now to
reduce the surface of the library. We can always add it back in when we need
it again.
llvm-svn: 276611
We optimize the kernel _after_ dumping the IR we generate to make the IR we
dump easier readable and independent of possible changes in the general
purpose LLVM optimizers.
llvm-svn: 276551
Run the NVPTX backend over the GPUModule IR and write the resulting assembly
code in a string.
To work correctly, it is important to invalidate analysis results that still
reference the IR in the kernel module. Hence, this change clears all references
to dominators, loop info, and scalar evolution.
Finally, the NVPTX backend has troubles to generate code for various special
floating point types (not surprising), but also for uncommon integer types. This
commit does not resolve these issues, but pulls out problematic test cases into
separate files to XFAIL them individually and resolve them in future (not
immediate) changes one by one.
llvm-svn: 276396
This change introduces the actual compute code in the GPU kernels. To ensure
all values referenced from the statements in the GPU kernel are indeed available
we scan all ScopStmts in the GPU kernel for references to llvm::Values that
are not yet covered by already modeled outer loop iterators, parameters, or
array base pointers and also pass these additional llvm::Values to the
GPU kernel.
For arrays used in the GPU kernel we introduce a new ScopArrayInfo object, which
is referenced by the newly generated access functions within the GPU kernel and
which is used to help with code generation.
llvm-svn: 276270
This is useful for external users using IslExprBuilder, in case they cannot
embed ScopArrayInfo data into their isl_ids, because the isl_ids either already
carry other information or the isl_ids have been created and their user pointers
cannot be updated any more.
llvm-svn: 276268
This ensures that no trivially dead code is generated. This is not only cleaner,
but also avoids troubles in case code is generated in a separate function and
some of this dead code contains references to values that are not available.
This issue may happen, in case the memory access functions have been updated
and old getelementptr instructions remain in the code. With normal Polly,
a test case is difficult to draft, but the upcoming GPU code generation can
possibly trigger such problems. We will later extend this dead-code elimination
to region and vector statements.
llvm-svn: 276263
It seems the order in which we generated memory accesses changed such that
the import of these updated memory accesses failed for the 'loop3' statement
in this test case. Unfortunately, the existing CHECK lines were not strict
enough to catch this. Hence, besides fixing the order of the memory access
lines we also ensure that the memory access changes are both clearly visibly
and well checked.
llvm-svn: 276247
This makes the structure of the code clearer and reduces the size of runOnScop.
We also adjust the coding style to the latest LLVM style guide.
llvm-svn: 276246
This makes the structure of the code clearer and reduces the size of runOnScop.
We also adjust the coding style to the latest LLVM style guide.
llvm-svn: 276245
This makes the structure of the code clearer and reduces the size of runOnScop.
We also adjust the coding style to the latest LLVM style guide.
llvm-svn: 276244
This is currently not supported and will only be added later. Also update the
test cases to ensure no invariant code hoisting is applied.
llvm-svn: 275987
This simplifies the upcoming patches to add code generation for ScopStmts. Load
hoisting support will later be added in a separate commit. This commit will
be implicitly tested by the subsequent GPGPU changes.
llvm-svn: 275969
We use this opportunity to further classify the different user statements that
can arise and add TODOs for the ones not yet implemented.
llvm-svn: 275957
Create for each kernel a separate LLVM-IR module containing a single function
marked as kernel function and taking one pointer for each array referenced
by this kernel. Add debugging output to verify the kernels are generated
correctly.
llvm-svn: 275952
Initialize the list of references to a GPU array to ensure that the arrays that
need to be passed to kernel calls are computed correctly. Furthermore, the very
same information is also necessary to compute synchronization correctly. As the
functionality to compute these references is already available, what is left for
us to do is only to connect the necessary functionality to compute array
reference information.
llvm-svn: 275798
Create LLVM-IR for all host-side control flow of a given GPU AST. We implement
this by introducing a new GPUNodeBuilder class derived from IslNodeBuilder. The
IslNodeBuilder will take care of generating all general-purpose ast nodes, but
we provide our own createUser implementation to handle the different GPU
specific user statements. For now, we just skip any user statement and only
generate a host-code sceleton, but in subsequent commits we will add handling of
normal ScopStmt's performing computations, kernel calls, as well as host-device
data transfers. We will also introduce run-time check generation and LICM in
subsequent commits.
llvm-svn: 275783
This ensures that accidental calls to these functions will break loadly instead
of corrupting the stack with invalid return values.
These functions have been introduced earlier as replacement of pet and parts of
ppcg which we will never use and consequently have not been imported or compiled
into Polly.
llvm-svn: 275680
Otherwise ppcg would try to call into pet functionality that this not available,
which obviously will cause trouble. As we can easily print these statements
ourselves, we just do so.
llvm-svn: 275579
This option increases the scalability of the scheduler and allows us to remove
the 'gisting' workaround we introduced in r275565 to handle a more complicated
test case. Another benefit of using this option is also that the generated
code looks a lot more streamlined.
Thanks to Sven Verdoolaege for reminding me of this option.
llvm-svn: 275573
This works around a shortcoming of the isl scheduler, which even for some
smaller test cases does not terminate in case domain constraints are part
of the flow dependences.
llvm-svn: 275565
It seems we forgot to actually add the memory access ids to the tagged accesses,
but instead just tagged the accesses with empty isl_ids. This issue was found
by inspection and without code generation it is difficult to test just by
itself. We fix it for now without test case and expect our code generation
tests to cover this later on.
llvm-svn: 275557
We do not have them in Polly and the code to check for them is directly
referring to pet data structures which we do not have available.
This commit avoids undefined behavior. As such issues are difficult to
reproduce, this commit comes without a test case.
llvm-svn: 275553
Arrays with integer base type are similar to arrays with floating point types,
with the exception that LLVM's integer types can take some odd values. We
add a selection of different values to make sure we correctly round these
types when necessary.
References to scalar integer types are special, as we currently do not model
these types as array accesses as they are considered 'synthesizable' by Polly.
As a result, we do not generate explicit data-transfers for them, but instead
will need to keep track of all references to 'synthesizable' values separately.
At the current stage, this is only visible by missing host-to-device
data-transfer calls. In the future, we will also require special code generation
strategies.
llvm-svn: 275551
We currently only test that the code structure we generate for these scalar
parameters is correct and we add these types to make sure later code generation
additions have sufficient test coverage.
In case some of these types cannot be mapped due to missing hardware support
on the GPU some of these test cases may need to be updated later on.
llvm-svn: 275548
Instead of directly linking to ppcg's main source directory, we link to the
parent director. This allows us to access ppcg's include files with
'ppcg/cuda.h' and avoids a conflict with NVIDIA's cuda.h header.
Also drop an include directory that is currently not used.
llvm-svn: 275536
A sequence of CHECK lines allows additional statements to appear in the
output of the tested program without any test failures appearing. As we do
not want this to happen, switch this test case to use CHECK-NEXT.
llvm-svn: 275534
For this we need to provide an explicit list of statements as they occur in
the polly::Scop to ppcg.
We also setup basic AST printing facilities to facilitate debugging. To allow
code reuse some (minor) changes in ppcg are have been necessary.
llvm-svn: 275436
Instead of calling to a pet function that does not return anything, we pass
our own dummy implementation to ppcg that always returns a nullptr. This
ensures that the list of ast expressions always contains a nullptr and we do
not accidentally free a random (uninitalized) pointer. This resolves the
last valgrind warning we see.
We provide an implementation for this function, when the generated AST
expressions can be used and consequently can be tested.
llvm-svn: 275435
The tile size was previously uninitialized. As a result, it was often zero (aka.
no tiling), which is not what we want in general. More importantly, there was
the risk for arbitrary tile sizes to be choosen, which we did not observe, but
which still is highly problematic.
llvm-svn: 275418
This change now applies ppcg's GPU mapping on our initial schedule. For this
to work, we need to also initialize the set of all names (isl_ids) used in
the scop as well as the program context.
llvm-svn: 275396
To do so we copy the necessary information to compute an initial schedule from
polly::Scop to ppcg's scop. Most of the necessary information is directly
available and only needs to be passed on to ppcg, with the exception of 'tagged'
access relations, access relations that additionally carry information about
which memory access an access relation originates from.
We could possibly perform the construction of tagged accesses as part of
ScopInfo, but as this format is currently specific to ppcg we do not do this
yet, but keep this functionality local to our GPU code generation.
After the scop has been initialized, we compute data dependences and ask ppcg to
compute an initial schedule. Some of this functionality is already available in
polly::DependenceInfo and polly::ScheduleOptimizer, but to keep differences
to ppcg small we use ppcg's functionality here. We may later investiage if
a closer integration of these tools makes sense.
llvm-svn: 275390
At this stage, we do not yet modify the IR but just generate a default
initialized ppcg_scop and gpu_prog and free both immediately. Both will later be
filled with data from the polly::Scop and are needed to use PPCG for GPU
schedule generation. This commit does not yet perform any GPU code generation,
but ensures that the basic infrastructure has been put in place.
We also add a simple test case to ensure the new code is run and use this
opportunity to verify that GPU_CODEGEN tests are only run if GPU code generation
has been enabled in cmake.
llvm-svn: 275389
Add a new pass to serve as basis for automatic accelerator mapping in Polly.
The pass structure and the analyses preserved are copied from
CodeGeneration.cpp, as we will rely on IslNodeBuilder and IslExprBuilder for
LLVM-IR code generation.
Polly's accelerator code generation is enabled with -polly-target=gpu
I would like to use this commit as opportunity to thank Yabin Hu for his work in
the context of two Google summer of code projects during which he implemented
initial prototypes of the Polly accelerator code generation -- in parts this
code is already available in todays Polly (e.g., tools/GPURuntime). More will
come as part of the upcoming Polly ACC changes.
Reviewers: Meinersbur
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D22036
llvm-svn: 275275
ppcg will be used to provide mapping decisions for GPU code generation.
As we do not use C as input language, we do not include pet. However, we include
pet.h from pet 82cacb71 plus a set of dummy functions to ensure ppcg links
without problems.
The version of ppcg committed is unmodified ppcg-0.04 which has been well tested
in the context of LLVM. It does not provide an official library interface yet,
which means that in upcoming commits we will add minor modifications to make
necessary functionality accessible. We will aim to upstream these modifications
after we gained enough experience with GPU generation support in Polly to
propose a stable interface.
Reviewers: Meinersbur
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D22033
llvm-svn: 275274
Check not only that the compiler is not crashing, but also whether the
probablematic part (The sequence of instructions simplified to '4') is reflected
in the output.
Thanks to Tobias for the hint.
llvm-svn: 275189
An assertion in visitSDivInstruction() checked whether the divisor is constant
by checking whether the argument is a ConstantInt. However, SCEVValidator allows
the divisor to be simplified to a constant by ScalarEvolution.
We synchronize the implementation of SCEVValidator and SCEVAffinator to both
accept simplified SCEV expressions.
llvm-svn: 275174
Summary: LLVM adds a new value FMRB_DoesNotReadMemory in the enumeration.
Reviewers: andrew.w.kaylor, chrisj, zinob, grosser, jdoerfert
Subscribers: Meinersbur, pollydev
Differential Revision: http://reviews.llvm.org/D22109
llvm-svn: 275085
Commit r275056 introduced a gcc compile failure due to us using two
types named 'Type', the first being the newly introduced member variable
'Type' the second being llvm::Type. We resolve this issue by renaming
the newly introduced member variable to AccessType.
llvm-svn: 275057
Summary:
With a struct we can use named accessors instead of generic std::get<3>()
calls. This increases readability of the source code.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D21955
llvm-svn: 275056
We now compute the invalid context of memory accesses only for the domain under
which the memory access is executed. Without limiting ourselves to this
restricted domain, invalid accesses outside of the domain of actually executed
statement instances may result in the execution domain of the statement to
become empty despite the fact that the statement will actually be executed. As a
result, such scops would use unitialized values for their computations which
results in incorrect computations.
This fixes http://llvm.org/PR27944 and unbreaks the
-polly-position=before-vectorizer buildbots.
llvm-svn: 275053
For llvm the memory accesses from nonaffine loops should be visible,
however for polly those nonaffine loops should be invisible/boxed.
This fixes llvm.org/PR28245
Cointributed-by: Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D21591
llvm-svn: 274842
This is a regular maintenance update to ensure the latest version of isl is
tested.
Interesting Changes:
- AST nodes and expressions are now printed as YAML
llvm-svn: 274614
There is function is currently unused and will be replaced in the future by
functions that allow to allocate memory only on the host or only on the device.
llvm-svn: 274597
When setting the POLLY_DEBUG environment variable, on calls to the run-time
library the name of the function called is printed to stderr.
llvm-svn: 274596
There is no need to specifically match for isl, but we can exclude anything in
lib/External from formatting as we assume that externally contributed code
should always match the upstream code. This simplifies the cmake script and
allows additional external projects to be added without the need to explicitly
exclude them from formatting.
llvm-svn: 274557
Since r274197 -polly-position=before-vectorizer caused various LNT failures
for example in SingleSource/Benchmarks/Linpack. These failures seem to only
occur when the CFLAA pass is scheduled in our codegen-cleanup passes, which
suggests that the way we call this AA pass is somehow problematic. As this pass
is not of high importance, we drop the pass for now to prevent these failures
from happening. At a later point, we might investigate more in-depth why this
specific usage scenario caused correctness issues.
llvm-svn: 274427
These iterators are provided to complete the interface with non-range iterators
and are useful for external users of ScopInfo. To ensure they are tested we
use them to implement the existing range iterators.
llvm-svn: 274276
This ensures that the error status set with -polly-on-isl-error-abort is
maintained even after running DependenceInfo and ScheduleOptimizer. Both
passes temporarily set the error status to CONTINUE as the dependence
analysis uses a compute-out and the scheduler may not be able to derive
a schedule. In both cases we want to not abort, but to handle the error
gracefully. Before this commit, we always set the error reporting to ABORT
after these passes. After this commit, we use the error reporting mode that was
active earlier.
This comes without a test case as this would require us to introduce (memory)
errors which would trigger the isl errors.
llvm-svn: 274272
It is only used internally by the ScopInfo pass. By moving it into its
own header file we avoid it being processed that use only ScopInfo.
llvm-svn: 273983
The methods in ScopBuilder are used for the construction of a Scop,
while the remaining classes of ScopInfo are required by all passes that
use Polly's polyhedral analysis.
llvm-svn: 273982
This function is used by both ScopInfo and ScopBuilder. A common
location for this function is required when ScopInfo and ScopBuilder are
separated into separate files in the next commit.
llvm-svn: 273981
Reject and report regions that contains loops overlapping nonaffine region.
This situation typically happens in the presence of inifinite loops.
This addresses bug llvm.org/PR28071.
Differential Revision: http://reviews.llvm.org/D21312
Contributed-by: Huihui Zhang <huihuiz@codeaurora.org>
llvm-svn: 273905
This patch addresses:
- A new function pass to compute polyhedral dependences. This is
required to avoid the region pass manager.
- Stores a map of Scop to Dependence object for all the scops present
in a function. By default, access wise dependences are stored.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D21105
llvm-svn: 273881
This patch adds a new function pass ScopInfoWrapperPass so that the
polyhedral description of a region, the SCoP, can be constructed and
used in a function pass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20962
llvm-svn: 273856
1. SCoP object is not owned by ScopBuilder. It just creates a SCoP and
hand over ownership through getScop() method.
2. ScopInfoRegionPass owns the SCoP object for a given region.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20912
llvm-svn: 273855
llvm commonly adds a comment to the closing brace of a namespace to indicate
which namespace is closed. clang-tidy provides with llvm-namespace-comment
a handy tool to check for this habit. We use it to ensure we consitently use
namespace comments in Polly.
There are slightly different styles in how namespaces are closed in LLVM. As
there is no large difference between the different comment styles we go for the
style clang-tidy suggests by default.
To reproduce this fix run:
for i in `ls tools/polly/lib/*/*.cpp`; \
clang-tidy -checks='-*,llvm-namespace-comment' -p build $i -fix \
-header-filter=".*"; \
done
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273621
This addresses warnings produced by clang's -Wextra-semi.
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273607
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273437
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273436
Instead of using 0 or NULL use the C++11 nullptr symbol when referencing null
pointers.
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273435
This is the first patch to apply the BLIS matmul optimization pattern
on matmul kernels
(http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel,
plus two packing routines. The macro-kernel is implemented in terms
of two additional loops around a micro-kernel. The micro-kernel
is a loop around a rank-1 (i.e., outer product) update.
In this change we create the BLIS micro-kernel by applying
a combination of tiling and unrolling. In subsequent changes
we will add the extraction of the BLIS macro-kernel
and implement the packing transformation.
Contributed-by: Roman Gareev <gareevroman@gmail.com>
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D21140
llvm-svn: 273397