This fixes some bad -O0 codegen and the unnecessary clearing of al on entry to objc_msgSend for most message sends.
<rdar://problem/7102824> [irgen] unnecessary xorb on calls to objc_msgSend on x86_64
llvm-svn: 82118
- Previously this would crash on recursive types, and it was also incorrectly
stripping off a level of indirection.
- I'm not 100% convinced this is all correct, but it should be a monotonic
improvment.
llvm-svn: 75582
The idea is to segregate Objective-C "object" pointers from general C pointers (utilizing the recently added ObjCObjectPointerType). The fun starts in Sema::GetTypeForDeclarator(), where "SomeInterface *" is now represented by a single AST node (rather than a PointerType whose Pointee is an ObjCInterfaceType). Since a significant amount of code assumed ObjC object pointers where based on C pointers/structs, this patch is very tedious. It should also explain why it is hard to accomplish this in smaller, self-contained patches.
This patch does most of the "heavy lifting" related to moving from PointerType->ObjCObjectPointerType. It doesn't include all potential "cleanups". The good news is additional cleanups can be done later (some are noted in the code). This patch is so large that I didn't want to include any changes that are purely aesthetic.
By making the ObjC types truly built-in, they are much easier to work with (and require fewer "hacks"). For example, there is no need for ASTContext::isObjCIdStructType() or ASTContext::isObjCClassStructType()! We believe this change (and the follow-up cleanups) will pay dividends over time.
Given the amount of code change, I do expect some fallout from this change (though it does pass all of the clang tests). If you notice any problems, please let us know asap! Thanks.
llvm-svn: 75314
variables in ObjC's Next runtime mode. Next runtime also implicitly applies
'used' attribute on some of its meta-data. This results in two
'llvm.used' arrays to be generated, and one of them is renamed to
'llvm.used1'.
llvm-svn: 74008
___Block_byref_id_object_dispose and ___Block_byref_id_object_copy
functions so that we can simply reuse instead of creating a new one.
Additionally, add an assert to ensure no one yet tries to align a
__block variable beyond the alignment of a pointer as the codegen is
incomplete.
llvm-svn: 72974
- Otherwise we emit internal names with embedded '\01' characters,
which confuses some tools.
- Ideally all the code which wants to get a "display name" for the
given function should follow one code path, but this should be a
monotonic improvement for now.
llvm-svn: 71774
message dispage API for all but a few messages. This is
a runtime performance improvement and there is not meant
to be a functional change.
llvm-svn: 71467
compensating for super classes). This was making the reported class
sizes for empty classes very, very wrong.
- Also, we now report the size info for an empty class like gcc (as
the offset of the start, not as 0, 0).
- Add a few more test cases we were mishandling before (padding bit
field at end of struct, for example).
llvm-svn: 70938
via CollectObjCIvars.
- In places where we need them, we should have the implementation and
access the properties through it.
This is a fairly substantial functionality change:
1. @encode no longer encodes synthesized ivars, ever.
2. The ivar layout bitmap no longer encodes information for
synthesized ivars in superclasses. Well, actually I had already
broken that, but it is intentional now.
We are now differing substantially from llvm-gcc and gcc
here. However, in my opinion this fundamentally *must* work if
non-fragile classes are to work. Without this change, the result of
@encode and the ivar layout depend on the order that the
implementation is seen in a file (if it is in the same file with its
superclass). Since both scenarios should work the same, our behavior
is now consistent with gcc behavior as if an implementation is never
seen following an implementation of its superclass.
Note that #2 is only a functionality change when (A) an
implementation appears in the same translation unit with the
implementation of its superclass, and (B) the superclass has
synthesized ivars. My belief is that this situation does not occur in
practice.
I am not yet sure of the role/semantics of @encode when synthesized
ivars are present... it's use is fairly unsound in a non-fragile world.
llvm-svn: 70822
compatible with VC++ and GCC. The codegen/mangling angle hasn't
been fully ironed out yet. Note that we accept int128_t even in
32-bit mode, unlike gcc.
llvm-svn: 70464
types.
- I broke this in the switch to representing interfaces with opaque
types.
- <rdar://problem/6822660> clang crashes on subscript of interface in
32-bit mode
llvm-svn: 70009
- As with malloc and friends, this is important where the return type
on a 64-bit platform would otherwise end up discarding the upper
32-bits.
llvm-svn: 69874
Rework the shadow struct that is layed out for Objective-C classes.
- Superclasses are now always laid out in their shadow structure at
the first field.
- Prior to this, the entire class heirarchy was flattened into a
single structure which meant that alignment, padding, and bitfields
were incorrect (the ASTRecordLayout was correct however, which
meant our debug info didn't coincide with ivar offsets, for
example).
- This is still very suboptimal (for example, ivar are looked up
recursively, but I believe the ivar layout itself is now at least
close to correct.
- <rdar://problem/6773388> error: objc[29823]: layout bitmap sliding
backwards
llvm-svn: 69811
- Superclasses are now always laid out their shadow structure at the
first field.
- Prior to this, the entire class heirarchy was flattened into a
single structure which meant that alignment, padding, and bitfields
weren't packed correctly (the ASTRecordLayout was correct however,
which meant our debug info didn't coincide with ivar offsets, for
example).
- This is still very suboptimal, but I believe the ivar layout itself
is now at least close to correct.
- <rdar://problem/6773388> error: objc[29823]: layout bitmap sliding
backwards
llvm-svn: 69771
- The confusing IRgen bitfield interface is partly to blame here;
fixing the functional error for now, cleanups to the interface to
follow.
llvm-svn: 69503
- This was particularly bad since I fixed one instance of this name
and not another, meaning we got an LLVM module with the same
effective name in two different globals!
llvm-svn: 69205
- Set alignment on property lists.
- 32-bit:
o Set section on property lists.
o Fix section name for category class methods.
o Fix symbol name for property lists.
o Fix section name for class method.
o Set alignment and section on class extension structure.
o Set alignment on a number of things: instance variables, methods,
method descriptions, the symbols structure.
- 64-bit:
o Fix section flags for protocol list.
I doubt most of these were problems in practice, but it is nice to
match llvm-gcc.
llvm-svn: 69132
- Changed method names to match gcc (categories names still aren't
mangled in).
- Expose correct name for class and metadata symbols (although
-fvisibility=hidden isn't yet correct).
- Remove several things from llvm.used that didn't need to be there
(I suspect this can still be trimmed).
- Don't use asm-prefix extension for _objc_empty_{cache,vtable} (not
needed).
- Hide EH type class info with -fvisibility=hidden
- Change setGlobal[Option]Visibility to not change the visibility of
functions with internal linkage.
llvm-svn: 68510
ObjCNonFragileABITypesHelper by converting them to dynamic
getters. This fixes a crash on rdar://6757213. The others
should be converted over as well.
llvm-svn: 68445
In a case like:
@class foo;
foo *P;
addRecordToClass was making an empty shadow struct for the foo interface and
completing it. Later when an:
@interface foo
...
@endif
foo *Q;
was seen, ASTContext::addRecordToClass would think that foo was already laid
out and not lay out the definition. This fixes it to create a forward declared
struct the first time around, then complete it when the definition is seen.
Note that this causes two tests to regress, because something is trying to get
the size of the forward declared structs returned by this. Previously, this
would end up getting a size of zero but now it properly dies. I'm not sure
what the right solution is for this, so I xfailed the tests.
Fariborz, please take a look at this. The testcase in rdar://6676794 now gets
farther, but dies later because the objc ivar is not assigned a field number.
As an aside, I really don't like the fact that the objc front-end is creating
shadow C structs for ObjC types. This seems like an implementation detail of
the code generator that could be fixed by better factoring of the extant code.
llvm-svn: 68106