don't correctly implement the scoping rules of C++11 range based for
loops. This kind of aliasing isn't a good idea anyways (and wasn't
really intended).
llvm-svn: 247241
manager to avoid a slow linear scan of every immutable pass and on every
attempt to find an analysis pass.
This speeds up 'check-llvm' on an unoptimized build for me by 15%, YMMV.
It should also help (a tiny bit) other folks that are really
bottlenecked on repeated runs of tiny pass pipelines across small IR
files.
llvm-svn: 247240
without *requiring* it.
This allows a pass indicate that it will use an analysis if available
(through getAnalysisIfAvailable). When the pass manager knows this, it
will refrain from deleting that analysis if it can. Naturally, it will
still get invalidated at the correct time. These passes are not
considered when scheduling the pass pipeline, so typically they will
require manual scheduling, but this may also allow passes with
getAnalysisIfAvailable to find the analysis more often if nothing after
them requires that analysis and it wasn't invalidated.
I don't have a particular use case with the current passes, but with my
new structure for alias analyses, this will be very useful. We want to
allow people to customize the set of AAs available by scheduling
additional passes. These's aren't ever *required* for obvious reasons.
So we need some way to mark in the legacy pass manager that they will
still be used if available.
This is essentially how analysis groups already work. But this makes the
feature generally available and more explicit. It should allow the AA
change to not impact how people trigger a custom alias analysis being
available at a certain point in compilation.
Differential Revision: http://reviews.llvm.org/D12114
llvm-svn: 245409
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
querying of the pass registry.
The pass manager relies on the static registry of PassInfo objects to
perform all manner of its functionality. I don't understand why it does
much of this. My very vague understanding is that this registry is
touched both during static initialization *and* while each pass is being
constructed. As a consequence it is hard to make accessing it not
require a acquiring some lock. This lock ends up in the hot path of
setting up, tearing down, and invaliditing analyses in the legacy pass
manager.
On most systems you can observe this as a non-trivial % of the time
spent in 'ninja check-llvm'. However, I haven't really seen it be more
than 1% in extreme cases of compiling more real-world software,
including LTO.
Unfortunately, some of the GPU JITs are seeing this taking essentially
all of their time because they have very small IR running through
a small pass pipeline very many times (at least, this is the vague
understanding I have of it).
This patch tries to minimize the cost of looking up PassInfo objects by
leveraging the fact that the objects themselves are immutable and they
are allocated separately on the heap and so don't have their address
change. It also requires a change I made the last time I tried to debug
this problem which removed the ability to de-register a pass from the
registry. This patch creates a single access path to these objects
inside the PMTopLevelManager which memoizes the result of querying the
registry. This is somewhat gross as I don't really know if
PMTopLevelManager is the *right* place to put it, and I dislike using
a mutable member to memoize things, but it seems to work.
For long-lived pass managers this should completely eliminate
the cost of acquiring locks to look into the pass registry once the
memoized cache is warm. For 'ninja check' I measured about 1.5%
reduction in CPU time and in total time on a machine with 32 hardware
threads. For normal compilation, I don't know how much this will help,
sadly. We will still pay the cost while we populate the memoized cache.
I don't think it will hurt though, and for LTO or compiles with many
small functions it should still be a win. However, for tight loops
around a pass manager with many passes and small modules, this will help
tremendously. On the AArch64 backend I saw nearly 50% reductions in time
to complete 2000 cycles of spinning up and tearing down the pipeline.
Measurements from Owen of an actual long-lived pass manager show more
along the lines of 10% improvements.
Differential Revision: http://reviews.llvm.org/D7213
llvm-svn: 227299
Also remove redundant documentation:
- doxygen will copy documentation to overriden methods.
- Use \copydoc on PIMPL classes instead of replicating the text.
llvm-svn: 224089
This removes calls to isMaterializable in the following cases:
* It was redundant with a call to isDeclaration now that isDeclaration returns
the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.
llvm-svn: 221050
Sometimes a LLVM compilation may take more time then a client would like to
wait for. The problem is that it is not possible to safely suspend the LLVM
thread from the outside. When the timing is bad it might be possible that the
LLVM thread holds a global mutex and this would block any progress in any other
thread.
This commit adds a new yield callback function that can be registered with a
context. LLVM will try to yield by calling this callback function, but there is
no guaranteed frequency. LLVM will only do so if it can guarantee that
suspending the thread won't block any forward progress in other LLVM contexts
in the same process.
Once the client receives the call back it can suspend the thread safely and
resume it at another time.
Related to <rdar://problem/16728690>
llvm-svn: 208945
This commit provides the necessary C/C++ APIs and infastructure to enable fine-
grain progress report and safe suspension points after each pass in the pass
manager.
Clients can provide a callback function to the pass manager to call after each
pass. This can be used in a variety of ways (progress report, dumping of IR
between passes, safe suspension of threads, etc).
The run listener list is maintained in the LLVMContext, which allows a multi-
threaded client to be only informed for it's own thread. This of course assumes
that the client created a LLVMContext for each thread.
This fixes <rdar://problem/16728690>
llvm-svn: 207430
each line. This is particularly nice for tracking which run of
a particular pass over a particular function was slow.
This also required making the TimeValue string much more useful. First,
there is a standard format for writing out a date and time. Let's use
that rather than strings that would have to be parsed. Second, actually
output the nanosecond resolution that timevalue claims to have.
This is proving useful working on PR19499, so I figured it would be
generally useful to commit.
llvm-svn: 207385
indirectly requires a function analysis.
This bug was reported by Jason Kim. He included a test case here:
http://reviews.llvm.org/D3312
llvm-svn: 205753
Nothing was using the ability of the pass to delete the raw_ostream it
printed to, and nothing was trying to pass it a pointer to the
raw_ostream. Also, the function variant had a different order of
arguments from all of the others which was just really confusing. Now
the interface accepts a reference, doesn't offer to delete it, and uses
a consistent order. The implementation of the printing passes haven't
been updated with this simplification, this is just the API switch.
llvm-svn: 199044
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
llvm-svn: 199041
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
llvm-svn: 198836
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
give the files a legacy prefix in the right directory. Use forwarding
headers in the old locations to paper over the name change for most
clients during the transitional period.
No functionality changed here! This is just clearing some space to
reduce renaming churn later on with a new system.
Even when the new stuff starts to go in, it is going to be hidden behind
a flag and off-by-default as it is still WIP and under development.
This patch is specifically designed so that very little out-of-tree code
has to change. I'm going to work as hard as I can to keep that the case.
Only direct forward declarations of the PassManager class are impacted
by this change.
llvm-svn: 194324