This is almost entirely a matter of just flipping a switch. 99% of
the runtime support is available all the way back to when it was
implemented in the non-fragile runtime, i.e. in Lion. However,
fragile runtimes do not recognize ARC-style ivar layout strings,
which means that accessing __strong or __weak ivars reflectively
(e.g. via object_setIvar) will end up accessing the ivar as if it
were __unsafe_unretained. Therefore, when using reflective
technologies like KVC, be sure that your paths always refer to a
property.
rdar://23209307
llvm-svn: 250955
The ELF symbol visibilities are:
- internal: Not visibile across DSOs, cannot pass address across DSOs
- hidden: Not visibile across DSOs, can be called indirectly
- default: Usually visible across DSOs, possibly interposable
- protected: Visible across DSOs, not interposable
LLVM only supports the latter 3 visibilities. Internal visibility is in
theory useful, as it allows you to assume that the caller is maintaining
a PIC register for you in %ebx, or in some other pre-arranged location.
As far as LLVM is concerned, this isn't worth the trouble. Using hidden
visibility is always correct, so we can just do that.
Resolves PR9183.
llvm-svn: 250954
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables on Linux/x86_64.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags on Linux/x86_64.
This is a re-land of r250941, limited to Linux/x86_64 + a very minor
refactoring in SanitizerArgs.
llvm-svn: 250949
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags, unless the target defaults to PIE.
llvm-svn: 250941
Specifically, handle under-aligned object references (by explicitly
ignoring them, because this just isn't representable in the format;
yes, this means that GC silently ignores such references), descend
into anonymous structs and unions, stop classifying fields of
pointer-to-strong/weak type as strong/weak in ARC mode, and emit
skips to cover the entirety of block layouts in GC mode. As a
cleanup, extract this code into a helper class, avoid a number of
unnecessary copies and layout queries, generate skips implicitly
instead of explicitly tracking them, and clarify the bitmap-creation
logic.
llvm-svn: 250919
The logic for parsing FP capabilities to set __ARM_FP was mistakenly removing
the Half-Precision capability when handling fp-only-sp resulting in a value
of 0x4. Section 6.5.1 of ACLE states that for such FP architectures the value
should be 0x6
llvm-svn: 250888
headers. If those headers end up being textually included twice into the same
module, we get ambiguity errors.
Work around this by downgrading the ambiguity error to a warning if multiple
identical internal-linkage functions appear in an overload set, and just pick
one of those functions as the lookup result.
llvm-svn: 250884
This time, I went with the first approach from
http://reviews.llvm.org/D6700, where clang actually attempts to form an
implicit member reference from an UnresolvedLookupExpr. We know that
there are only two possible outcomes at this point, a DeclRefExpr of the
FieldDecl or an error, but its safer to reuse the existing machinery for
this.
llvm-svn: 250856
Microsoft's ATL headers make use of this MSVC extension, add support for
it and issue a diagnostic under -Wmicrosoft-exception-spec.
This fixes PR25265.
llvm-svn: 250854
Clang will now accept this valid C++11 code:
struct A { int field; };
struct B : A {
using A::field;
enum { TheSize = sizeof(field) };
};
Previously we would classify the 'field' reference as something other
than a field, and then forget to apply the C++11 rule to allow
non-static data member references in unevaluated contexts.
This usually arises in class templates that want to reference fields of
a dependent base in an unevaluated context outside of an instance
method. Such contexts do not allow references to 'this', so the only way
to access the field is with a using decl and an implicit member
reference.
llvm-svn: 250839
According to the Intel documentation, the mask operand of a maskload and
maskstore intrinsics is always a vector of packed integer/long integer values.
This patch introduces the following two changes:
1. It fixes the avx maskload/store intrinsic definitions in avxintrin.h.
2. It changes BuiltinsX86.def to match the correct gcc definitions for avx
maskload/store (see D13861 for more details).
Differential Revision: http://reviews.llvm.org/D13861
llvm-svn: 250816
Currently debug info for types used in explicit cast only is not emitted. It happened after a patch for better alignment handling. This patch fixes this bug.
Differential Revision: http://reviews.llvm.org/D13582
llvm-svn: 250795
This reverts commit r250592.
It has issues around unevaluated contexts, like this:
template <class T> struct A { T i; };
template <class T>
struct B : A<T> {
using A<T>::i;
typedef decltype(i) U;
};
template struct B<int>;
llvm-svn: 250774
Out-of-line definitions of static data members which have an inline
initializer must get GVA_DiscardableODR linkage instead of
GVA_StrongExternal linkage.
MSVC 2013's behavior is different with respect to this and would cause
link errors if one TU provided a definition while another did not.
MSVC 2015 fixed this bug, making this OK. Note that the 2015 behavior
is always compatible with 2013: it never produces a strong definition.
This essentially reverts r237787.
llvm-svn: 250757
This makes the format tests look more like most other FileCheck tests in clang.
The multiple-inputs tests still use temp files, to make sure that the file
input code in clang-format stays tested.
Stop stripping out the comment lines in style-on-command-line.cpp as they don't
get in the way and it makes the test simpler. Also remove 2>&1s on the tests in
that file that don't need it.
http://reviews.llvm.org/D13852
llvm-svn: 250706
The Intel MCU psABI requires floating-point values to be passed in-reg.
This makes the x86-32 ABI code respect "-mfloat-abi soft" and generate float inreg arguments.
Differential Revision: http://reviews.llvm.org/D13554
llvm-svn: 250689
Summary:
Similar to rL248426 (which was a followup to rL248379 and rL248424), add the
required libraries for OpenMP on the linker command line, and update the test
case.
Reviewers: emaste, theraven, joerg
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13822
llvm-svn: 250657
During the initial template parse for this code, 'member' is unresolved
and we don't know anything about it:
struct A { int member };
template <typename T>
struct B : public T {
using T::member;
static void f() {
(void)member; // Could be static or non-static.
}
};
template class B<A>;
The pattern declaration contains an UnresolvedLookupExpr rather than an
UnresolvedMemberExpr because `f` is static, and `member` should never be
a field. However, if the code is invalid, it may become a field, in
which case we should diagnose it.
Reviewers: rjmccall, rsmith
Differential Revision: http://reviews.llvm.org/D6700
llvm-svn: 250592
via -fmodule-file= to be turned off; in that case, just include the relevant
files textually. This allows module files to be unconditionally passed to all
compile actions via CXXFLAGS, and to be ignored for rules that specify custom
incompatible flags.
llvm-svn: 250577
r246877 made __builtin_object_size substantially more aggressive with
unknown bases if Type=1 or Type=3, which causes issues when we encounter
code like this:
struct Foo {
int a;
char str[1];
};
const char str[] = "Hello, World!";
struct Foo *f = (struct Foo *)malloc(sizeof(*f) + strlen(str));
strcpy(&f->str, str);
__builtin_object_size(&f->str, 1) would hand back 1, which is
technically correct given the type of Foo, but the type of Foo lies to
us about how many bytes are available in this case.
This patch adds support for this "writing off the end" idiom -- we now
answer conservatively when we're given the address of the very last
member in a struct.
Differential Revision: http://reviews.llvm.org/D12169
llvm-svn: 250488
Previously, our logic when taking the address of an overloaded function
would not consider enable_if attributes, so long as all of the enable_if
conditions on a given candidate were true. So, two functions with
identical signatures (one with enable_if attributes, the other without),
would be considered equally good overloads. If we were calling the
function instead of taking its address, then the function with enable_if
attributes would be preferred.
This patch makes us prefer the candidate with enable_if regardless of if
we're calling or taking the address of an overloaded function.
Differential Revision: http://reviews.llvm.org/D13795
llvm-svn: 250486
match the feature set of the function that they're being called from.
This ensures that we can effectively diagnose some[1] code that would
instead ICE in the backend with a failure to select message.
Example:
__m128d foo(__m128d a, __m128d b) {
return __builtin_ia32_addsubps(b, a);
}
compiled for normal x86_64 via:
clang -target x86_64-linux-gnu -c
would fail to compile in the back end because the normal subtarget
features for x86_64 only include sse2 and the builtin requires sse3.
[1] We're still not erroring on:
__m128i bar(__m128i const *p) { return _mm_lddqu_si128(p); }
where we should fail and error on an always_inline function being
inlined into a function that doesn't support the subtarget features
required.
llvm-svn: 250473
This recommits r250398 with fixes to the tests for bot failures.
Add "-target x86_64-unknown-linux" to the clang invocations that
check for the gold plugin.
llvm-svn: 250455
- On mingw-w64, libstdc++-6.dll is used for clang.exe. The DLL might not be in Windows' system directory.
- With --enable-shared, DLLs might be in ${CMAKE_BINARY_DIR}/bin.
I understand this test confirms that appropriate name of executable can be found on %PATH%.
Therefore I added "Output\\" before each expression.
FIXME: The output directory %T is hardcoded like "Output\\ps4-ld.exe".
llvm-svn: 250403
Rolling this back for now since there are a couple of bot failures on
the new tests I added, and I won't have a chance to look at them in detail
until later this afternoon. I think the new tests need some restrictions on
having the gold plugin available.
This reverts commit r250398.
llvm-svn: 250402
Summary:
Add clang support for -flto=thin option, which is used to set the
EmitFunctionSummary code gen option on compiles.
Add -flto=full as an alias to the existing -flto.
Add tests to check for proper overriding of -flto variants on the
command line, and convert grep tests to FileCheck.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, cfe-commits
Differential Revision: http://reviews.llvm.org/D11908
llvm-svn: 250398
Make sure we're matching what we want:
- Always have -generate-arange-section (independent of -g)
- Emit a -dwarf-version=... when -g is there.
llvm-svn: 250298
There was a minor problem with a test. Sorry for the noise yesterday.
This patch adds missing pieces to clang, including the PS4 toolchain
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D13482
llvm-svn: 250293
Resubmitting the patch.
This patch adds missing pieces to clang, including the PS4 toolchain
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D13482
llvm-svn: 250262
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D13482
llvm-svn: 250252
Prevent invalidation of `this' when a method is const; fixing PR 21606.
A patch by Sean Eveson!
Differential Revision: http://reviews.llvm.org/D13099
llvm-svn: 250237
context (but otherwise at the top level) to be disabled, to support use of C++
standard library implementations that (legitimately) mark their <blah.h>
headers as being C++ headers from C libraries that wrap things in 'extern "C"'
a bit too enthusiastically.
llvm-svn: 250137
We model predefined declarations as not being from AST files, but in most ways
they act as if they come from some implicit prebuilt module file imported
before all others. Therefore, if we see an update to the predefined 'struct
__va_list_tag' declaration (and we've already loaded any modules), it needs a
corresponding update record, even though it didn't technically come from an AST
file.
llvm-svn: 250134
Safestack runtime should never be linked on Android targets because
it is implemented directly in libc. This is already the case, but
mostly by chance (collectSanitizerRuntimes would only link shared
sanitizer runtimes, and safestack has only a static one). Protect
this behavior with a test.
llvm-svn: 250128
Add support for the `-fdebug-prefix-map=` option as in GCC. The syntax is
`-fdebug-prefix-map=OLD=NEW`. When compiling files from a path beginning with
OLD, change the debug info to indicate the path as start with NEW. This is
particularly helpful if you are preprocessing in one path and compiling in
another (e.g. for a build cluster with distcc).
Note that the linearity of the implementation is not as terrible as it may seem.
This is normally done once per file with an expectation that the map will be
small (1-2) entries, making this roughly linear in the number of input paths.
Addresses PR24619.
llvm-svn: 250094
This fixes a bug where one can take the address of a conditionally
enabled function to drop its enable_if guards. For example:
int foo(int a) __attribute__((enable_if(a > 0, "")));
int (*p)(int) = &foo;
int result = p(-1); // compilation succeeds; calls foo(-1)
Overloading logic has been updated to reflect this change, as well.
Functions with enable_if attributes that are always true are still
allowed to have their address taken.
Differential Revision: http://reviews.llvm.org/D13607
llvm-svn: 250090
Fixed a bug where we'd emit multiple diagnostics if there was a problem
taking the address of an overloaded template function.
Differential Revision: http://reviews.llvm.org/D13664
llvm-svn: 250078
Automatically insert line feed after pretty printing of all pragma-like attributes + fix printing of pragma-like pragmas on declarations.
Differential Revision: http://reviews.llvm.org/D13546
llvm-svn: 250017
C allows for some implicit conversions that C++ does not, e.g. void* ->
char*. This patch teaches clang that these conversions are okay when
dealing with overloads in C.
Differential Revision: http://reviews.llvm.org/D13604
llvm-svn: 249995
The inference of _Nullable for weak Objective-C properties was broken
in several ways:
* It was back-patching the type information very late in the process
of checking the attributes for an Objective-C property, which is
just wrong.
* It was using ad hoc checks to try to suppress the warning about
missing nullability specifiers (-Wnullability-completeness), which
didn't actual work in all cases (rdar://problem/22985457)
* It was inferring _Nullable even outside of assumes-nonnull regions,
which is wrong.
Putting the inference of _Nullable for weak Objective-C properties in
the same place as all of the other inference logic fixes all of these
ills.
llvm-svn: 249896
Summary:
Currently when a function annotated with __attribute__((nonnull)) is called in an unevaluated context with a null argument a -Wnonnull warning is emitted.
This warning seems like a false positive unless the call expression is potentially evaluated. Change this behavior so that the non-null warnings use DiagRuntimeBehavior so they wont emit when they won't be evaluated.
Reviewers: majnemer, rsmith
Subscribers: mclow.lists, cfe-commits
Differential Revision: http://reviews.llvm.org/D13408
llvm-svn: 249787
These are enabled by default in clang-cl, because the whole idea is that
it should work like cl.exe, but I suppose it can make sense to disable
them if someone wants to compile code in a more strict mode.
llvm-svn: 249775
CGBlocks.cpp.
This commit fixes a bug in clang's code-gen where it creates the
following functions but doesn't attach function attributes to them:
__copy_helper_block_
__destroy_helper_block_
__Block_byref_object_copy_
__Block_byref_object_dispose_
rdar://problem/20828324
Differential Revision: http://reviews.llvm.org/D13525
llvm-svn: 249735
Rationale :
// sse3
__m128d test_mm_addsub_pd(__m128d A, __m128d B) {
return _mm_addsub_pd(A, B);
}
// mmx
void shift(__m64 a, __m64 b, int c) {
_mm_slli_pi16(a, c);
_mm_slli_pi32(a, c);
_mm_slli_si64(a, c);
_mm_srli_pi16(a, c);
_mm_srli_pi32(a, c);
_mm_srli_si64(a, c);
_mm_srai_pi16(a, c);
_mm_srai_pi32(a, c);
}
clang -msse3 -mno-mmx file.c -c
For this code we should be able to explicitly turn off MMX
without affecting the compilation of the SSE3 function and then
diagnose and error on compiling the MMX function.
This is a preparatory patch to the actual diagnosis code which is
coming in a future patch. This sets us up to have the correct information
where we need it and verifies that it's being emitted for the backend
to handle.
llvm-svn: 249733
that we can build up an accurate set of features rather than relying on
TargetInfo initialization via handleTargetFeatures to munge the list
of features.
llvm-svn: 249732
C++ exceptions are still off by default, which is similar to how C++
cleanups are off by default in MSVC.
If you use clang instead of clang-cl, exceptions are also still off by
default. In the future, when C++ EH is proven to be stable, we may flip
the default for that driver to be consistent with other platforms.
llvm-svn: 249704
Simplifying the convoluted CPU handling in ARMTargetInfo.
The default base CPU on ARM is ARM7TDMI, arch ARMv4T, and
ARMTargetInfo had a different one. This wasn't visible from
Clang because the driver selects the defaults and sets the
Arch/CPU features directly, but the constructor depended
on the CPU, which was never used.
This patch corrects the mistake and greatly simplifies
how CPU is dealt with (essentially by removing the duplicated
DefaultCPU field).
Tests updated.
llvm-svn: 249699
consider the following:
enum E *p;
enum E { e };
The above snippet is not ANSI C because 'enum E' has not bee defined
when we are processing the declaration of 'p'; however, it is a popular
extension to make the above work. This would fail using the Microsoft
enum semantics because the definition of 'E' would implicitly have a
fixed underlying type of 'int' which would trigger diagnostic messages
about a mismatch between the declaration and the definition.
Instead, treat fixed underlying types as not fixed for the purposes of
the diagnostic.
llvm-svn: 249674
Our self hosting buildbots found a few more tests which weren't updated
to reflect that the enum semantics are part of the Microsoft ABI.
llvm-svn: 249670
Enums without an explicit, fixed, underlying type are implicitly given a
fixed 'int' type for ABI compatibility with MSVC. However, we can
enforce the standard-mandated rules on these types as-if we didn't know
this fact if the tag is not part of a definition.
llvm-svn: 249667
These test updates almost exclusively around the change in behavior
around enum: enums without a definition are considered incomplete except
when targeting MSVC ABIs. Since these tests are interested in the
'incomplete-enum' behavior, restrict them to %itanium_abi_triple.
llvm-svn: 249660
No ABI for C++ currently makes it possible to implement the standard
100% perfectly. We wrongly hid some of our compatible behavior behind
-fms-compatibility instead of tying it to the compiler ABI.
llvm-svn: 249656
With this change, most 'g' options are rejected by CompilerInvocation.
They remain only as Driver options. The new way to request debug info
from cc1 is with "-debug-info-kind={line-tables-only|limited|standalone}"
and "-dwarf-version={2|3|4}". In the absence of a command-line option
to specify Dwarf version, the Toolchain decides it, rather than placing
Toolchain-specific logic in CompilerInvocation.
Also fix a bug in the Windows compatibility argument parsing
in which the "rightmost argument wins" principle failed.
Differential Revision: http://reviews.llvm.org/D13221
llvm-svn: 249655
the "" and the suffix; that breaks names such as 'operator""if'. For symmetry,
also remove the space between the 'operator' and the '""'.
llvm-svn: 249641
The backend restores the stack pointer after recovering from an
exception. This is similar to r245879, but it doesn't try to use the
normal cleanup mechanism, so hopefully it won't cause the same breakage.
llvm-svn: 249640
Right now clang_Cursor_getMangling will attempt to mangle any
declaration, even if the declaration isn't mangled (extern C). This
results in a partially mangled name which isn't useful for much. This
patch makes clang_Cursor_getMangling return an empty string if the
declaration isn't mangled.
Patch by Michael Wu <mwu@mozilla.com>.
llvm-svn: 249639
We don't have a good place to put them. Our previous spot was causing us
to optimize loads from the exception object to undef, because it was
after the catchpad instruction that models the write to the catch
object.
llvm-svn: 249616
Currently codegen crashes trying to emit casting to bool &. It happens because bool type is converted to i1 and later then lvalue for reference is converted to i1*. But when codegen tries to load this lvalue it crashes trying to load value from this i1*.
Differential Revision: http://reviews.llvm.org/D13325
llvm-svn: 249534
Right now clang_Cursor_getMangling will attempt to mangle any
declaration, even if the declaration isn't mangled (extern "C"). This
results in a partially mangled name which isn't useful for much. This
patch makes clang_Cursor_getMangling return an empty string if the
declaration isn't mangled.
Patch by Michael Wu <mwu@mozilla.com>.
llvm-svn: 249437
that change turns out to not be reasonable: mutating the AST of a parsed
template during instantiation is not a sound thing to do, does not work across
chained PCH / modules builds, and is in any case a special-case workaround to a
more general problem that should be solved centrally.
llvm-svn: 249342
OpenCL v1.1 s6.2.2: for the boolean value true, every bit in the result vector should be set.
This change treats the i1 value as signed for the purposes of performing the cast to integer,
and therefore sign extend into the result.
Patch by Neil Hickey!
http://reviews.llvm.org/D13349
llvm-svn: 249301
r249137 added support for the new mips-mti-linux toolchain. However,
the new tests of that commit, broke some buildbots because they didn't use
the correct regular expressions to capture the filename of Clang & LLD.
This commit re-applies the changes of r249137 and fixes the tests in
r249137 in order to match the filenames of the Clang and LLD executable.
llvm-svn: 249294
In versions of clang prior to r238238, __declspec was recognized as a keyword in
all modes. It was then changed to only be enabled when Microsoft or Borland
extensions were enabled (and for CUDA, as a temporary measure). There is a
desire to support __declspec in Playstation code, and possibly other
environments. This commit adds a command-line switch to allow explicit
enabling/disabling of the recognition of __declspec as a keyword. Recognition
is enabled by default in Microsoft, Borland, CUDA, and PS4 environments, and
disabled in all other environments.
Patch by Warren Ristow!
llvm-svn: 249279
Diagnose when a pointer to const T is used as the first argument in at atomic
builtin unless that builtin is a load operation. This is already checked for
C11 atomics builtins but not for __atomic ones.
This patch was given the LGTM by rsmith when it was part
of a larger review. (See http://reviews.llvm.org/D10407)
llvm-svn: 249252
The default target is ARM on the ARM self host bots. This is problematic since
the behaviour on x86, x64 is different from ARM. Explicitly pass the target.
This should hopefully fix the ARM bots.
llvm-svn: 249229
The Windows on ARM ABI recommends that FPO be disabled. This is since the
Windows on ARM ABI uses the FP for fast stack walking. By paying the slight
cost of the loss of registers, a much faster backtrace is possible by using the
frame pointer since the pdata need not be consulted. Furthermore, even if pdata
is not available, you can still more easily reconstruct the stack.
llvm-svn: 249227
I randomly came across this difference between AArch64 and other targets:
on the latter, we don't emit nil checks for known non-nil class method
calls thanks to r247350, but we still do for AArch64 stret calls.
They use different code paths, because those are special, as they go
through the regular msgSend, not the msgSend*_stret variants.
llvm-svn: 249205
Ensure that the vptr store in the most-derived constructor is not behind
an invariant group barrier. Previously, the base-most vptr store would
be the one behind no barrier, and that could result in the creator of
the object thinking it had the base-most vtable.
This bug caused clang call pure virtual functions when called from
constructor body.
http://reviews.llvm.org/D13373
llvm-svn: 249197
All global variables that are not enclosed in a declare target region
must be captured in the target region as local variables do. Currently,
there is no support for declare target, so this patch adds support for
capturing all the global variables used in a the target region.
llvm-svn: 249154
This patch implements the outlining for offloading functions for code
annotated with the OpenMP target directive. It uses a temporary naming
of the outlined functions that will have to be updated later on once
target side codegen and registration of offloading libraries is
implemented - the naming needs to be made unique in the produced
library.
llvm-svn: 249148
Reapply r248935.
Usually, when using LTO with a clang installation newer than the
system's one, there's a libLTO.dylib version mismatch and LTO fails. One
solution to this is to make ld point to the right libLTO.dylib by
changing DYLD_LIBRARY_PATH.
However, ld64 supports specifying the complete path to the desired
libLTO.dylib through the -lto_library option. This commit adds support
for the clang driver to use this option whenever it's capable of finding
a libLTO.dylib in clang's installed library directory. This way, we
don't need to rely on DYLD_LIBRARY_PATH nor get caught by version
mismatches.
Differential Revision: http://reviews.llvm.org/D13117
rdar://problem/7363476
llvm-svn: 249143
Currently FastISel doesn't know how to select vector bitcasts.
During instruction selection, fast-isel always falls back to SelectionDAG
every time it encounters a vector bitcast.
As a consequence of this, all the 'packed vector shift by immedate count'
test cases in avx2-builtins.c are optimized by the DAGCombiner.
In particular, the DAGCombiner would always fold trivial stack loads of
constant shift counts into the operands of packed shift builtins.
This behavior would start changing as soon as I reapply revision 249121.
That revision would teach x86 fast-isel how to select bitcasts between vector
types of the same size.
As a consequence of that change, fast-isel would less often fall back to
SelectionDAG. More importantly, DAGCombiner would no longer be able to
simplify the code by folding the stack reload of a constant.
No functional change.
llvm-svn: 249142
Summary:
This new toolchain uses primarily LLVM-based tools, eg. compiler-rt, lld,
libcxx, etc. Because of this, it doesn't require neither an existing GCC
installation nor a GNU environment. Ideally, in a follow-up patch we
would like to add a new --{llvm|clang}-toolchain option (similar to
--gcc-toolchain) in order to allow the use of this toolchain with
independent Clang builds. For the time being, we use the --sysroot
option just to test the correctness of the paths generated by the
driver.
Reviewers: atanasyan, dsanders, rsmith
Subscribers: jfb, tberghammer, danalbert, srhines, dschuff, cfe-commits
Differential Revision: http://reviews.llvm.org/D13340
llvm-svn: 249137
partial specialization can perform conversions on the argument. Be sure we
start again from the original argument when checking each possible template.
llvm-svn: 249114
test that our intrinsics behave the same under -fsigned-char and
-funsigned-char.
This further testing uncovered that AVX-2 has a broken cmpgt for 8-bit
elements, and has for a long time. This is fixed in the same way as
SSE4 handles the case.
The other ISA extensions currently work correctly because they use
specific instruction intrinsics. As soon as they are rewritten in terms
of generic IR, they will need to add these special casts. I've added the
necessary testing to catch this however, so we shouldn't have to chase
it down again.
I considered changing the core typedef to be signed, but that seems like
a bad idea. Notably, it would be an ABI break if anyone is reaching into
the innards of the intrinsic headers and passing __v16qi on an API
boundary. I can't be completely confident that this wouldn't happen due
to a macro expanding in a lambda, etc., so it seems much better to leave
it alone. It also matches GCC's behavior exactly.
A fun side note is that for both GCC and Clang, -funsigned-char really
does change the semantics of __v16qi. To observe this, consider:
% cat x.cc
#include <smmintrin.h>
#include <iostream>
int main() {
__v16qi a = { 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__v16qi b = _mm_set1_epi8(-1);
std::cout << (int)(a / b)[0] << ", " << (int)(a / b)[1] << '\n';
}
% clang++ -o x x.cc && ./x
-1, 1
% clang++ -funsigned-char -o x x.cc && ./x
0, 1
However, while this may be surprising, both Clang and GCC agree.
Differential Revision: http://reviews.llvm.org/D13324
llvm-svn: 249097
With -fms-extensions it is possible to have a non-class record that is a
template specialization cause an assertion failure via the call to
Type::getAsCXXRecordDecl. Fixes PR 24246.
llvm-svn: 249090
Objective-C ARC lifetime qualifiers are dropped when canonicalizing
function types. Perform the same adjustment before comparing the
deduced result types of lambdas. Fixes rdar://problem/22344904.
llvm-svn: 249065
Prior to this patch, -Wtautological-overlap-compare would only warn us
if there was a sketchy logical comparison between variables and
IntegerLiterals. This patch makes -Wtautological-overlap-compare aware
of EnumConstantDecls, so it can apply the same logic to them.
llvm-svn: 249053
We support all __sync_val_compare_and_swap_* builtins (only 64-bit on 64-bit
targets) on all cores, and should define the corresponding
__GCC_HAVE_SYNC_COMPARE_AND_SWAP_* macros, just as GCC does. As it turns out,
this is really important because they're needed to prevent a bad ODR violation
with libstdc++'s std::shared_ptr (this is well explained in PR12730).
We were doing this only for P8, but this is necessary on all PPC systems.
llvm-svn: 249009
This reverts commit r248982 as it was breaking the ARM buildbots and the fix didn't work.
This reverts commit r248984, the fix that didn't work.
llvm-svn: 249005
recently when we started using direct conversion to model sign
extension. The __v16qi type we use for SSE v16i8 vectors is defined in
terms of 'char' which may or may not be signed! This causes us to
generate pmovsx and pmovzx depending on the setting of -funsigned-char.
This patch just forms an explicitly signed type and uses that to
formulate the sign extension. While this gets the correct behavior
(which we now verify with the enhanced test) this is just the tip of the
ice berg. Now that I know what to look for, I have found errors of this
sort *throughout* our vector code. Fortunately, this is the only
specific place where I know of users actively having their code
miscompiled by Clang due to this, so I'm keeping the fix for those users
minimal and targeted.
I'll be sending a proper email for discussion of how to fix these
systematically, what the implications are, and just how widely broken
this is... From what I can tell, we have never shipped a correct set of
builtin headers for x86 when users rely on -funsigned-char. Oops.
llvm-svn: 248980
Unqualified templated constructors cannot be friended and our lack of a
diagnostic led to violated invariants. Instead, raise a diagnostic when
processing the friend declaration.
This fixes PR20251.
llvm-svn: 248953
Summary: __nvvm_atom_cas_* returns the old value instead of whether the swap succeeds.
Reviewers: eliben, tra
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D13306
llvm-svn: 248951
When an Objective-C method implements a protocol requirement, do not
inherit any availability information from the protocol
requirement. Rather, check that the implementation is not less
available than the protocol requirement, as we do when overriding a
method that has availability. Fixes rdar://problem/22734745.
llvm-svn: 248949
Usually, when using LTO with a clang installation newer than the
system's one, there's a libLTO.dylib version mismatch and LTO fails. One
solution to this is to make ld point to the right libLTO.dylib by
changing DYLD_LIBRARY_PATH.
However, ld64 supports specifying the complete path to the desired
libLTO.dylib through the -lto_library option. This commit adds support
for the clang driver to use this option whenever it's capable of finding
a libLTO.dylib in clang's installed library directory. This way, we
don't need to rely on DYLD_LIBRARY_PATH nor get caught by version
mismatches.
Differential Revision: http://reviews.llvm.org/D13117
rdar://problem/7363476
llvm-svn: 248932
We get into this bad state when someone defines a new member function
for a class but forgets to add the declaration to the class body.
Calling the new member function from a member function template of the
class will crash during instantiation.
llvm-svn: 248925
- Remove virtual SC_OpenCLWorkGroupLocal storage type specifier
as it conflicts with static local variables now and prevents
diagnosing static local address space variables correctly.
- Allow static local and global variables (OpenCL2.0 s6.8 and s6.5.1).
- Improve diagnostics of allowed ASes for variables in different scopes:
(i) Global or static local variables have to be in global
or constant ASes (OpenCL1.2 s6.5, OpenCL2.0 s6.5.1);
(ii) Non-kernel function variables can't be declared in local
or constant ASes (OpenCL1.1 s6.5.2 and s6.5.3).
http://reviews.llvm.org/D13105
llvm-svn: 248906
Applied restrictions from OpenCL v2.0 s6.13.11.8
that mainly disallow operations on atomic types (except for taking their address - &).
The patch is taken from SPIR2.0 provisional branch, contributed by Guy Benyei!
llvm-svn: 248896
This is the clang commit associated with llvm r248887.
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D13127
llvm-svn: 248888
specification) to an error. No compiler other than Clang seems to allow this,
and it doesn't seem like a useful thing to accept as an extension in general.
The current behavior was added for PR5957, where the problem was specifically
related to mismatches of the exception specification on the implicitly-declared
global operator new and delete. To retain that workaround, we downgrade the
error to an ExtWarn when the declaration is of a replaceable global allocation
function.
Now that this is an error, stop trying (and failing) to recover from a missing
computed noexcept specification. That recovery didn't work, and led to crashes
in code like the added testcase.
llvm-svn: 248867
This patch corresponds to review:
http://reviews.llvm.org/D13190
Implemented the following interfaces to conform to ELF V2 ABI version 1.1.
vector signed __int128 vec_adde (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_adde (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed __int128 vec_addec (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_addec (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed int vec_addc(vector signed int __a, vector signed int __b);
vector bool char vec_cmpge (vector signed char __a, vector signed char __b);
vector bool char vec_cmpge (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmpge (vector signed short __a, vector signed short __b);
vector bool short vec_cmpge (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmpge (vector signed int __a, vector signed int __b);
vector bool int vec_cmpge (vector unsigned int __a, vector unsigned int __b);
vector bool char vec_cmple (vector signed char __a, vector signed char __b);
vector bool char vec_cmple (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmple (vector signed short __a, vector signed short __b);
vector bool short vec_cmple (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmple (vector signed int __a, vector signed int __b);
vector bool int vec_cmple (vector unsigned int __a, vector unsigned int __b);
vector double vec_double (vector signed long long __a);
vector double vec_double (vector unsigned long long __a);
vector bool char vec_eqv(vector bool char __a, vector bool char __b);
vector bool short vec_eqv(vector bool short __a, vector bool short __b);
vector bool int vec_eqv(vector bool int __a, vector bool int __b);
vector bool long long vec_eqv(vector bool long long __a, vector bool long long __b);
vector signed short vec_madd(vector signed short __a, vector signed short __b, vector signed short __c);
vector signed short vec_madd(vector signed short __a, vector unsigned short __b, vector unsigned short __c);
vector signed short vec_madd(vector unsigned short __a, vector signed short __b, vector signed short __c);
vector unsigned short vec_madd(vector unsigned short __a, vector unsigned short __b, vector unsigned short __c);
vector bool long long vec_mergeh(vector bool long long __a, vector bool long long __b);
vector bool long long vec_mergel(vector bool long long __a, vector bool long long __b);
vector bool char vec_nand(vector bool char __a, vector bool char __b);
vector bool short vec_nand(vector bool short __a, vector bool short __b);
vector bool int vec_nand(vector bool int __a, vector bool int __b);
vector bool long long vec_nand(vector bool long long __a, vector bool long long __b);
vector bool char vec_orc(vector bool char __a, vector bool char __b);
vector bool short vec_orc(vector bool short __a, vector bool short __b);
vector bool int vec_orc(vector bool int __a, vector bool int __b);
vector bool long long vec_orc(vector bool long long __a, vector bool long long __b);
vector signed long long vec_sub(vector signed long long __a, vector signed long long __b);
vector signed long long vec_sub(vector bool long long __a, vector signed long long __b);
vector signed long long vec_sub(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_sub(vector unsigned long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector unsigned long long __V2 ABI V1.1
http://ror float vec_sub(vector float __a, vector float __b);
unsigned char vec_extract(vector bool char __a, int __b);
signed short vec_extract(vector signed short __a, int __b);
unsigned short vec_extract(vector bool short __a, int __b);
signed int vec_extract(vector signed int __a, int __b);
unsigned int vec_extract(vector bool int __a, int __b);
signed long long vec_extract(vector signed long long __a, int __b);
unsigned long long vec_extract(vector unsigned long long __a, int __b);
unsigned long long vec_extract(vector bool long long __a, int __b);
double vec_extract(vector double __a, int __b);
vector bool char vec_insert(unsigned char __a, vector bool char __b, int __c);
vector signed short vec_insert(signed short __a, vector signed short __b, int __c);
vector bool short vec_insert(unsigned short __a, vector bool short __b, int __c);
vector signed int vec_insert(signed int __a, vector signed int __b, int __c);
vector bool int vec_insert(unsigned int __a, vector bool int __b, int __c);
vector signed long long vec_insert(signed long long __a, vector signed long long __b, int __c);
vector unsigned long long vec_insert(unsigned long long __a, vector unsigned long long __b, int __c);
vector bool long long vec_insert(unsigned long long __a, vector bool long long __b, int __c);
vector double vec_insert(double __a, vector double __b, int __c);
vector signed long long vec_splats(signed long long __a);
vector unsigned long long vec_splats(unsigned long long __a);
vector signed __int128 vec_splats(signed __int128 __a);
vector unsigned __int128 vec_splats(unsigned __int128 __a);
vector double vec_splats(double __a);
int vec_all_eq(vector double __a, vector double __b);
int vec_all_ge(vector double __a, vector double __b);
int vec_all_gt(vector double __a, vector double __b);
int vec_all_le(vector double __a, vector double __b);
int vec_all_lt(vector double __a, vector double __b);
int vec_all_nan(vector double __a);
int vec_all_ne(vector double __a, vector double __b);
int vec_all_nge(vector double __a, vector double __b);
int vec_all_ngt(vector double __a, vector double __b);
int vec_any_eq(vector double __a, vector double __b);
int vec_any_ge(vector double __a, vector double __b);
int vec_any_gt(vector double __a, vector double __b);
int vec_any_le(vector double __a, vector double __b);
int vec_any_lt(vector double __a, vector double __b);
int vec_any_ne(vector double __a, vector double __b);
vector unsigned char vec_sbox_be (vector unsigned char);
vector unsigned char vec_cipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_cipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_shasigma_be (vector unsigned int, const int, const int);
vector unsigned long long vec_shasigma_be (vector unsigned long long, const int, const int);
vector unsigned short vec_pmsum_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_pmsum_be (vector unsigned short, vector unsigned short);
vector unsigned long long vec_pmsum_be (vector unsigned int, vector unsigned int);
vector unsigned __int128 vec_pmsum_be (vector unsigned long long, vector unsigned long long);
vector unsigned char vec_gb (vector unsigned char);
vector unsigned long long vec_bperm (vector unsigned __int128 __a, vector unsigned char __b);
Removed the folowing interfaces either because their signatures have changed
in version 1.1 of the ABI or because they were implemented for ELF V2 ABI but
have actually been deprecated in version 1.1.
vector signed char vec_eqv(vector bool char __a, vector signed char __b);
vector signed char vec_eqv(vector signed char __a, vector bool char __b);
vector unsigned char vec_eqv(vector bool char __a, vector unsigned char __b);
vector unsigned char vec_eqv(vector unsigned char __a, vector bool char __b);
vector signed short vec_eqv(vector bool short __a, vector signed short __b);
vector signed short vec_eqv(vector signed short __a, vector bool short __b);
vector unsigned short vec_eqv(vector bool short __a, vector unsigned short __b);
vector unsigned short vec_eqv(vector unsigned short __a, vector bool short __b);
vector signed int vec_eqv(vector bool int __a, vector signed int __b);
vector signed int vec_eqv(vector signed int __a, vector bool int __b);
vector unsigned int vec_eqv(vector bool int __a, vector unsigned int __b);
vector unsigned int vec_eqv(vector unsigned int __a, vector bool int __b);
vector signed long long vec_eqv(vector bool long long __a, vector signed long long __b);
vector signed long long vec_eqv(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_eqv(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_eqv(vector unsigned long long __a, vector bool long long __b);
vector float vec_eqv(vector bool int __a, vector float __b);
vector float vec_eqv(vector float __a, vector bool int __b);
vector double vec_eqv(vector bool long long __a, vector double __b);
vector double vec_eqv(vector double __a, vector bool long long __b);
vector unsigned short vec_nand(vector bool short __a, vector unsigned short __b);
llvm-svn: 248813
Description.
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered regions in the order of the loop iterations.
Restrictions.
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region.
An ordered directive with ‘simd’ clause is generated as an outlined function and corresponding function call to prevent this part of code from vectorization later in backend.
llvm-svn: 248772
Currently it's 64-bit which will lead to mismatch between host and
device code if we compile for i386.
Differential Revision: http://reviews.llvm.org/D13181
llvm-svn: 248753
Parsing and sema analysis for 'simd' clause in 'ordered' directive.
Description
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered
regions in the order of the loop iterations.
Restrictions
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region
llvm-svn: 248696
ARM EABI adds target attributes to the object file. Amongst the attributes that
are emitted is the VFP argument passing (Hard vs Soft). The linker is
responsible for checking these attributes and erroring on mismatches. This
causes problems for the compiler-rt builtins when targeting both hard and
soft. Because both of these options name the builtins compiler-rt component
the same (libclang_rt.builtins-arm.a or libclang_rt.builtins-arm-android). GCC
is able to get away with this as it does one target per toolchain. This
changes the naming convention for the ARM compiler-rt builtins to differentiate
between HF and Soft. Although this means that compiler-rt may be duplicated, it
enables supporting both variants from a single toolchain. A similar approach is
taken by the Darwin toolchain, naming the library to differentiate between the
calling conventions.
llvm-svn: 248649
Summary:
The store being checked for in arc-cxx11-init-list.mm is a store to an
unescaped alloca. After an uncoming change to ScalarEvolution, LLVM is
able to elide the store, so adjust the test accordingly.
Reviewers: compnerd
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13183
llvm-svn: 248632
This patch fixes the order in which we evaluate the different ways that
a function call could be disallowed. Now, if you call a non-overloaded
function with an incomplete type and failing enable_if, we'll prioritize
reporting the more obvious error (use of incomplete type) over reporting
the failing enable_if.
Thanks to Ettore Speziale for the patch!
llvm-svn: 248595
OpenMP 4.1 extends format of '#pragma omp ordered'. It adds 3 additional clauses: 'threads', 'simd' and 'depend'.
If no clause is specified, the ordered construct behaves as if the threads clause had been specified. If the threads clause is specified, the threads in the team executing the loop region execute ordered regions sequentially in the order of the loop iterations.
The loop region to which an ordered region without any clause or with a threads clause binds must have an ordered clause without the parameter specified on the corresponding loop directive.
llvm-svn: 248569
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D11279
llvm-svn: 248546
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in
a hand-rolled tricky condition block in lib/Basic/Targets.cpp, with a FIXME:
attached.
http://reviews.llvm.org/D12937 moved the handling of the DSP feature over to
ARMTargetParser.def in LLVM, to be in line with other architecture extensions.
This is the corresponding patch to clang, to clear the FIXME: and update
the tests.
Differential Revision: http://reviews.llvm.org/D12938
llvm-svn: 248521
Change the analyzer's modeling of memcpy to be more precise when copying into fixed-size
array fields. With this change, instead of invalidating the entire containing region the
analyzer now invalidates only offsets for the array itself when it can show that the
memcpy stays within the bounds of the array.
This addresses false positive memory leak warnings of the kind reported by
krzysztof in https://llvm.org/bugs/show_bug.cgi?id=22954
(This is the second attempt, now with assertion failures resolved.)
A patch by Pierre Gousseau!
Differential Revision: http://reviews.llvm.org/D12571
llvm-svn: 248516
Summary:
Strictly speaking, the MIPS*R2 ISA's should not permit -mnan=2008 since this
feature was added in MIPS*R3. However, other toolchains permit this and we
should do the same.
Reviewers: atanasyan
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13057
llvm-svn: 248481
Trace the ranges through the macro backtrace better. This allows better
range highlighting through all levels of the macro bracktrace. Also some
improvements to backtrace printer for omitting different backtraces.
Patch by Zhengkai Wu.
Differential Revision: http://reviews.llvm.org/D12379
llvm-svn: 248454
This patch ignores malloc-overflow bug in two cases:
Case1:
x = a/b; where n < b
malloc (x*n); Then x*n will not overflow.
Case2:
x = a; // when 'a' is a known value.
malloc (x*n);
Also replaced isa with dyn_cast.
Reject multiplication by zero cases in MallocOverflowSecurityChecker
Currently MallocOverflowSecurityChecker does not catch cases like:
malloc(n * 0 * sizeof(int));
This patch rejects such cases.
Two test cases added. malloc-overflow2.c has an example inspired from a code
in linux kernel where the current checker flags a warning while it should not.
A patch by Aditya Kumar!
Differential Revision: http://reviews.llvm.org/D9924
llvm-svn: 248446
silently ignore them on arguments when they're provided indirectly
(.e.g behind a template argument or typedef).
This is mostly just good language design --- specifying that a
generic argument is __weak doesn't actually do anything --- but
it also prevents assertions when trying to apply a different
ownership qualifier.
rdar://21612439
llvm-svn: 248436
someone thought all the bits would be value bits in this case.
Also fix the wording of the warning -- it claimed that the width of 'bool' is
8, which is not correct; the width is 1 bit, whereas the size is 8 bits in our
implementation.
llvm-svn: 248435
Added new option --cuda-path=<path> which allows
overriding default search paths.
If it's not specified we look for CUDA installation in
/usr/include/cuda and /usr/include/cuda-7.0.
Differential Revision: http://reviews.llvm.org/D12989
llvm-svn: 248433
Various improvements to the localization checker:
* Adjusted copy to be consistent with diagnostic text in other Apple
API checkers.
* Added in ~150 UIKit / AppKit methods that require localized strings in
UnlocalizedStringsChecker.
* UnlocalizedStringChecker now checks for UI methods up the class hierarchy and
UI methods that conform for a certain Objective-C protocol.
* Added in alpha version of PluralMisuseChecker and some regression tests. False
positives are still not ideal.
(This is the second attempt, with the memory issues on Linux resolved.)
A patch by Kulpreet Chilana!
Differential Revision: http://reviews.llvm.org/D12417
llvm-svn: 248432
This doesn't quite get alias template equivalence right yet, but handles the
egregious cases where we would silently give the wrong answers.
llvm-svn: 248431
Added new option --cuda-path=<path> which allows
overriding default search paths.
If it's not specified we look for CUDA installation in
/usr/include/cuda and /usr/include/cuda-7.0.
Differential Revision: http://reviews.llvm.org/D12989
llvm-svn: 248408
Adjust __global__ functions with DiscardableODR linkage to use
StrongODR linkage instead, so they are visible externally.
Differential Revision: http://reviews.llvm.org/D13067
llvm-svn: 248400
Our string literal parser copied any source-file new-line characters
into the execution string-literal. This is incorrect if the source-file
new-line character was a \r\n sequence because new-line characters are
merely \n.
llvm-svn: 248392
We took both source locations from the end of the initializer list what
the code below doesn't expect. This can lead to a crash when rendering
the diagnostic (PR24816). Assert that we have more than one element in
a scalar initializer with too many elements.
llvm-svn: 248391
This translates to -load name.so in the cc1 command. We can't name the driver
option -load, as that means "link against oad", so instead we follow GCC's lead
and name the option -fplugin.
llvm-svn: 248378
An assertion hit has been fixed for cmdlines like
$ clang --target=arm-linux-gnueabi -mcpu=generic hello.c
Related to: http://reviews.llvm.org/rL245445
Reviewers: rengolin
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13013
llvm-svn: 248370
Various improvements to the localization checker:
* Adjusted copy to be consistent with diagnostic text in other Apple
API checkers.
* Added in ~150 UIKit / AppKit methods that require localized strings in
UnlocalizedStringsChecker.
* UnlocalizedStringChecker now checks for UI methods up the class hierarchy and
UI methods that conform for a certain Objective-C protocol.
* Added in alpha version of PluralMisuseChecker and some regression tests. False
positives are still not ideal.
A patch by Kulpreet Chilana!
Differential Revision: http://reviews.llvm.org/D12417
llvm-svn: 248350
when building a module. Clang already records the module signature when
building a skeleton CU to reference a clang module.
Matching the id in the skeleton with the one in the module allows a DWARF
consumer to verify that they found the correct version of the module
without them needing to know about the clang module format.
llvm-svn: 248345
Currently realloc(ptr, 0) is treated as free() which seems to be not correct. C
standard (N1570) establishes equivalent behavior for malloc(0) and realloc(ptr,
0): "7.22.3 Memory management functions calloc, malloc, realloc: If the size of
the space requested is zero, the behavior is implementation-defined: either a
null pointer is returned, or the behavior is as if the size were some nonzero
value, except that the returned pointer shall not be used to access an object."
The patch equalizes the processing of malloc(0) and realloc(ptr,0). The patch
also enables unix.Malloc checker to detect references to zero-allocated memory
returned by realloc(ptr,0) ("Use of zero-allocated memory" warning).
A patch by Антон Ярцев!
Differential Revision: http://reviews.llvm.org/D9040
llvm-svn: 248336
This fixes PR16833, in which the analyzer was using large amounts of memory
for switch statements with large case ranges.
rdar://problem/14685772
A patch by Aleksei Sidorin!
Differential Revision: http://reviews.llvm.org/D5102
llvm-svn: 248318
Summary:
`TypeTraitExpr`s are not supported by the ExprEngine today. Analyzer
creates a sink, and aborts the block. Therefore, certain bugs that
involve type traits intrinsics cannot be detected (see PR24710).
This patch creates boolean `SVal`s for `TypeTraitExpr`s, which are
evaluated by the compiler.
Test within the patch is a summary of PR24710.
Reviewers: zaks.anna, dcoughlin, krememek
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12482
llvm-svn: 248314
* adds -aux-triple option to specify target triple
* propagates aux target info to AST context and Preprocessor
* pulls in target specific preprocessor macros.
* pulls in target-specific builtins from aux target.
* sets appropriate host or device attribute on builtins.
Differential Revision: http://reviews.llvm.org/D12917
llvm-svn: 248299
* Only the last of the --cuda-host-only/--cuda-device-only options has effect.
* CudaHostAction always wraps host-side compilation now.
* Fixed printing of empty action lists.
Differential Revision: http://reviews.llvm.org/D12892
llvm-svn: 248297
The changes are part of attribute-based CUDA function overloading (D12453)
and as such are only enabled when it's in effect (-fcuda-target-overloads).
Differential Revision: http://reviews.llvm.org/D12122
llvm-svn: 248296
The patch makes it possible to parse CUDA files that contain host/device
functions with identical signatures, but different attributes without
having to physically split source into host-only and device-only parts.
This change is needed in order to parse CUDA header files that have
a lot of name clashes with standard include files.
Gory details are in design doc here: https://goo.gl/EXnymm
Feel free to leave comments there or in this review thread.
This feature is controlled with CC1 option -fcuda-target-overloads
and is disabled by default.
Differential Revision: http://reviews.llvm.org/D12453
llvm-svn: 248295
This makes sure that we emit kernels that were instantiated from the
host code and which would never be explicitly referenced by anything
else on device side.
Differential Revision: http://reviews.llvm.org/D11666
llvm-svn: 248293
Before, clang's internal assembler would reject the inline asm in clang's
Intrin.h. To make sure this doesn't happen for other Intrin.h functions using
__asm__ blocks, add 32-bit and 64-bit codegen tests for Intrin.h.
Sadly, these tests discovered that __readcr3 and __writecr3 have bad
implementations in 64-bit builds. This will have to be fixed in a follow-up.
llvm-svn: 248234
This commit fixes an assert that is triggered when optnone is being
added to an IR function that is already marked with minsize and optsize.
rdar://problem/22723716
Differential Revision: http://reviews.llvm.org/D13004
llvm-svn: 248191
Several inputs may not refer to one output constraint in inline assembler
insertions, clang was failing on assertion on such test case.
llvm-svn: 248158
Currently, the availability of DSP instructions (ACLE 6.4.7) is handled in
a hand-rolled tricky condition block in lib/Basic/Targets.cpp, with a FIXME:
attached.
http://reviews.llvm.org/D12937 moved the handling of +t2dsp over to
ARMTargetParser.def in LLVM, to be in line with other architecture extensions.
This is the corresponding patch to clang, to clear the FIXME: and update
the tests.
Differential Revision: http://reviews.llvm.org/D12938
llvm-svn: 248154
128-bit vector integer sign extensions correctly lower to the pmovsx instructions even for debug builds.
This patch removes the builtins and reimplements the _mm_cvtepi*_epi* intrinsics __using builtin_shufflevector (to extract the bottom most subvector) and __builtin_convertvector (to actually perform the sign extension).
Differential Revision: http://reviews.llvm.org/D12835
llvm-svn: 248092
If an import directive was put into wrong context, the error message was obscure,
complaining on misbalanced braces. To get more descriptive messages, annotation
tokens related to modules are processed where they must not be seen.
Differential Revision: http://reviews.llvm.org/D11844
llvm-svn: 248085
Binary literals predate C++14, but they are listed as a C++14 extension since
this was the first time they were standardized in the language. Move the
warning into a subgroup so it can be selectively disabled when checking for
other C++14 features.
llvm-svn: 248064
Summary:
Name `Out` refers to the parameter. It is moved into the member `Out`
in ctor-init. Dereferencing null pointer will crash clang, if user
passes '-analyzer-viz-egraph-ubigraph' argument.
Reviewers: zaks.anna, krememek
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12119
llvm-svn: 248050
LLVM r217812 made it so that clang-cl implicitly creates bigobj files when
needed, independent of this flag. It looks like cl has this flag to produce obj
flags compatible with MSVS 2003's linker by default, something we don't care
about. Since clang-cl always has /bigobj behavior, don't warn that the flag is
unused, just ignore it silently.
llvm-svn: 248034