Trace the ranges through the macro backtrace better. This allows better
range highlighting through all levels of the macro bracktrace. Also some
improvements to backtrace printer for omitting different backtraces.
Patch by Zhengkai Wu.
Differential Revision: http://reviews.llvm.org/D12379
llvm-svn: 248454
Presumably, if the printf format has the sign explicitly requested, the user
wants to treat the data as signed.
This is a fix-up for r172739, and also includes several test changes that
didn't make it into that commit.
llvm-svn: 172762
This is inspired by a number of false positives in real code, including
PR14968. I've added test cases reduced from these false positives to
test/Sema/unused-expr.c, as well as corresponding test cases that pass the
offending expressions as arguments to a no-op macro to ensure that we do warn
there.
This also removes my previous tweak from r166522/r166534, so that we warn on
unused cast expressions in macro arguments.
There were several test cases that were using -Wunused-value to test general
diagnostic emission features; I changed those to use other warnings or warn on
a macro argument expression. I stared at the test case for PR14399 for a while
with Richard Smith and we believe the new test case exercises the same
codepaths as before.
llvm-svn: 172696
This still isn't quite right, but it fixes a crash.
I factored out findCommonParent because we need it on the result of
getImmediateExpansionRange: for a function macro, the beginning
and end of an expansion range can come out of different
macros/macro arguments, which means the resulting range is a complete
mess to handle consistently.
I also made some changes to how findCommonParent works; it works somewhat
better in some cases, and somewhat worse in others, but I think overall
it's a better balance. I'm coming to the conclusion that mapDiagnosticRanges
isn't using the right algorithm, though: chasing the caret is fundamentally
more complicated than any algorithm which only considers one FileID for the
caret can handle because each SourceLocation doesn't really have a single parent.
We need to follow the same path of choosing expansion locations and spelling
locations which the caret used to come up with the correct range
in the general case.
Fixes <rdar://problem/12847524>.
llvm-svn: 170049
Fixes a crash printing diagnostics on the gcc testsuite, and also makes
diagnostic range printing print nicer results for token pastes.
llvm-svn: 169068
caret locations and source ranges in macros. Makes ranges more accurate
in some cases, and fixes an assertion failure.
Fixes <rdar://problem/12472249>.
llvm-svn: 167353
formatting as any other diagnostic, they will be properly line wrapped and
otherwise pretty printed. Let's take advantage of that and the new factoring to
add some helpful information to them (much like template backtrace notes and
other notes): the name of the macro whose expansion is being noted. This makes
a world of difference if caret diagnostics are disabled, making the expansion
notes actually useful in this case. It also helps ensure that in edge cases the
information the user needs is present. Consider:
% nl -ba t5.cc
1 #define M(x, y, z) \
2 y
3
4 M(
5 1,
6 2,
7 3);
We now produce:
% ./bin/clang -fsyntax-only t5.cc
t5.cc:6:3: error: expected unqualified-id
2,
^
t5.cc:2:3: note: expanded from macro: M
y
^
1 error generated.
Without the added information in the note, the name of the macro being expanded
would never be shown.
This also deletes a FIXME to use the diagnostic formatting. It's not yet clear
to me that we *can* do this reasonably, and the production of this message was
my primary goal here anyways.
I'd love any comments or suggestions on improving these notes, their wording,
etc. Currently, I need to make them provide more helpful information in the
presence of a token-pasting buffer, and I'm pondering adding something along
the lines of "expanded from argument N of macro: ...".
llvm-svn: 142127
and 'expansions' rather than 'instantiated' and 'contexts'.
This is the first of several patches migrating Clang's terminology
surrounding macros from 'instantiation' to 'expansion'.
llvm-svn: 135135
argument expansion to use the macro argument source locations as well.
Add a few tests to exercise this. There is still a bit more work needed
here though.
llvm-svn: 134674
instantiation and improve diagnostics which are stem from macro
arguments to trace the argument itself back through the layers of macro
expansion.
This requires some tricky handling of the source locations, as the
argument appears to be expanded in the opposite direction from the
surrounding macro. This patch provides helper routines that encapsulate
the logic and explain the reasoning behind how we step through macros
during diagnostic printing.
This fixes the rest of the test cases originially in PR9279, and later
split out into PR10214 and PR10215.
There is still some more work we can do here to improve the macro
backtrace, but those will follow as separate patches.
llvm-svn: 134660
This is a one line fix here:
+ // Don't print recursive instantiation notes from an instantiation note.
+ Loc = SM.getSpellingLoc(Loc);
While here, fix the testcase to be more precise (it got filecheck'ized
brutally), and fix EmitCaretDiagnostic to be private and to not pass down
the unused 'Level' argument.
llvm-svn: 133993
we'd add an offset from the spelling location space to the
instantiation location, which doesn't make sense and would
lead up to the text diagnostics crashing when presented with
non-sensical locations.
This fixes rdar://7597492, a crash on 255.vortex.
llvm-svn: 96004
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
The "instantiated from" messages coming from the caret diagnostics system are
basically walking the macro expansion tree, emitting each level as it goes. However, it was
skipping certain leaves in the tree by skipping up the entire instantiation arm every time
it went up one spelling arm. This caused it to miss some things. For example, in this
testcase:
#define M1(x) x
#define M2 1;
void foo() {
M1(M2)
}
we now print:
/Users/sabre/Desktop/clang-unused-value-macro.c:6:2: warning: expression result unused
M1(M2)
^~~~~~
/Users/sabre/Desktop/clang-unused-value-macro.c:6:5: note: instantiated from:
M1(M2)
^~
/Users/sabre/Desktop/clang-unused-value-macro.c:3:12: note: instantiated from:
#define M2 1;
^
Previously we didn't print the last line, so we never emitted the caret pointing to the 1!
Incidentally, the spaces between the lines is really noisy, I think we should reconsider
this heuristic (which adds them when the printed code starts too close to the start of the
line).
The regression test can't use -verify, because -verify doesn't catch notes for macro
instantiation history.
llvm-svn: 71025