Summary:
Setting MIMG to 0 has a bunch of unexpected side effects, including that
isVMEM returns false which leads to incorrect treatment in the hazard
recognizer. The reason I noticed it is that it also leads to incorrect
treatment in VGPR-to-SGPR copies, which is one cause of the referenced bug.
The only reason why MIMG was set to 0 is to signal the special handling of
dmasks, but that can be checked differently.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96877
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D22210
llvm-svn: 275113
There was a combine before to handle the simple copy case.
Split this into handling loads and stores separately.
We might want to change how this handles some of the vector
extloads, since this can result in large code size increases.
llvm-svn: 274394
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
Debugger prologue is emitted if -mattr=+amdgpu-debugger-emit-prologue.
Debugger prologue writes work group IDs and work item IDs to scratch memory at fixed location in the following format:
- offset 0: work group ID x
- offset 4: work group ID y
- offset 8: work group ID z
- offset 16: work item ID x
- offset 20: work item ID y
- offset 24: work item ID z
Set
- amd_kernel_code_t::debug_wavefront_private_segment_offset_sgpr to scratch wave offset reg
- amd_kernel_code_t::debug_private_segment_buffer_sgpr to scratch rsrc reg
- amd_kernel_code_t::is_debug_supported to true if all debugger features are enabled
Differential Revision: http://reviews.llvm.org/D20335
llvm-svn: 273769
Summary:
Offset folding only works if you are emitting relocations, and we don't
emit relocations for local address space globals.
Reviewers: arsenm, nhaustov
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21647
llvm-svn: 273765
Split AMDGPUSubtarget into amdgcn/r600 specific subclasses.
This removes most of the static_casting of the basic codegen
classes everywhere, and tries to restrict the features
visible on the wrong target.
llvm-svn: 273652
The main sin this was committing was using terminator
instructions in the middle of the block, and then
not updating the block successors / predecessors.
Split the blocks up to avoid this and introduce new
pseudo instructions for branches taken with exec masking.
Also use a pseudo instead of emitting s_endpgm and erasing
it in the special case of a non-void return.
llvm-svn: 273467
This will help sneak undefs past GVN into the DAG for
some tests.
Also add missing intrinsic for rsq_legacy, even though the node
was already selected to the instruction. Also start passing
the debug location to intrinsic errors.
llvm-svn: 273181
This should select to s_trap, but that requires
additonal work to setup and enable the trap handler.
For now emit s_endpgm so bugpoint stops getting stuck
on the unsupported call to abort.
Emit a warning that this will only terminate the wave and
not really trap.
llvm-svn: 273062
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Re-commit this after fixing a bug where we were trying to use a
reference to a Triple object that had already been destroyed.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272705
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272675
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
This was using extract_subreg sub0 to extract the low register
of the result instead of sub0_sub1, producing an invalid copy.
There doesn't seem to be a way to use the compound subreg indices
in tablegen since those are generated, so manually select it.
llvm-svn: 272344
Remove broken patterns matching it. This was matching the
unsafe math pattern and expanding the fix for the buggy instruction
from the pattern. The problems are also on CI. Remove the workarounds
and only use fract with unsafe math or from the intrinsic.
llvm-svn: 271078
Summary:
Discovered by Dave Airlie, fixes an assertion in Khronos OpenGL CTS
GL43-CTS.shader_storage_buffer_object.advanced-matrix.
In this particular case, the buffer load intrinsic fed into a uniform
conditional branch, and led the brcond lowering down the wrong path.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19931
llvm-svn: 268650
Now that unaligned access expansion should not attempt
to produce i64 accesses, we can remove the hack in
PreprocessISelDAG where this is done.
This allows splitting i64 private accesses while
allowing the new add nodes indexing the vector components
can be folded with the base pointer arithmetic.
llvm-svn: 268293
This was being treated the same as private, which has an immediate
offset. For unknown, it probably means it's for a computation not
actually being used for accessing memory, so it should not have a
nontrivial addressing mode.
llvm-svn: 268002
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Summary:
In the added test-case, the atomic instruction feeds into a non-machine
CopyToReg node which hasn't been selected yet, so guard against
non-machine opcodes here.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19043
llvm-svn: 266433
Currently what comes out of instruction selection is a
register initialized to -1, and then copied to m0.
MachineCSE doesn't consider copies, but we want these
to be CSEed. This isn't much of a problem currently,
because SIFoldOperands is run immediately after.
This avoids regressions when SIFoldOperands is run later
from leaving all copies to m0.
llvm-svn: 266377
Summary:
The code previously always used s1 as it was using the user + system SGPR
information for compute kernels. This is incorrect for Mesa shaders though,
The register should be the next SGPR after all user and system SGPR's.
We use that Mesa adds arguments for all input and system SGPR's and
take the next available SGPR for the scratch wave offset register.
Signed-off-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewers: mareko, arsenm, nhaehnle, tstellarAMD
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18941
Patch By: Bas Nieuwenhuizen
llvm-svn: 266336
This helps clean up some of the mess when expanding unaligned 64-bit
loads when changed to be promote to v2i32, and fixes situations
where or x, 0 was emitted after splitting 64-bit ors during moveToVALU.
I think this could be a generic combine but I'm not sure.
llvm-svn: 266104
This makes it possible to distinguish between mesa shaders
and other kernels even in the presence of compute shaders.
Patch By: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Differential Revision: http://reviews.llvm.org/D18559
llvm-svn: 265589
Summary:
Implement BUFFER_ATOMIC_CMPSWAP{,_X2} instructions on all GCN targets, and FLAT_ATOMIC_CMPSWAP{,_X2} on CI+.
32-bit instruction variants tested manually on Kabini and Bonaire. Tests and parts of code provided by Jan Veselý.
Patch by: Vedran Miletić
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: jvesely, scchan, kanarayan, arsenm
Differential Revision: http://reviews.llvm.org/D17280
llvm-svn: 265170
Summary:
Static LDS size is saved in MachineFunctionInfo::LDSSize,
We define a pseudo instruction with usesCustomInserter bit set. Then, in EmitInstrWithCustomInserter,
we replace this pseudo instruction with a mov of MachineFunctionInfo::LDSSize.
Reviewers:
arsenm
tstellarAMD
Subscribers
llvm-commits, arsenm
Differential Revision:
http://reviews.llvm.org/D18064
llvm-svn: 263563
The maximum private allocation for the whole GPU is 4G,
so the maximum possible index for a single workitem is the
maximum size divided by the smallest granularity for a dispatch.
This increases the number of known zero high bits, which
enables more offset folding. The maximum private size per
workitem with this is 128M but may be smaller still.
llvm-svn: 262153
This matches the behavior of the HSAIL clock instruction.
s_realmemtime is used if the subtarget supports it, and falls
back to s_memtime if not.
Also introduces new intrinsics for each of s_memtime / s_memrealtime.
llvm-svn: 262119
Add parsing and printing of image operands. Matches legacy sp3 assembler.
Change image instruction order to have data/image/sampler operands in the beginning. This is needed because optional operands in MC are always last.
Update SITargetLowering for new order.
Add basic MC test.
Update CodeGen tests.
Review: http://reviews.llvm.org/D17574
llvm-svn: 261995
Summary:
These correspond to IMAGE_LOAD/STORE[_MIP] and are going to be used by Mesa
for the GL_ARB_shader_image_load_store extension.
IMAGE_LOAD is already matched by llvm.SI.image.load. That intrinsic has
a legacy name and pretends not to read memory.
Differential Revision: http://reviews.llvm.org/D17276
llvm-svn: 261224
Tests for the new scalarize all private access options will be
included with a future commit.
The only functional change is to make the split/scalarize behavior
for private access of > 4 element vectors to be consistent
with the flat/global handling. This makes the spilling worse
in the two changed tests.
llvm-svn: 260804
This was hardcoded to the static private size, but this
would be missing the offset and additional size for someday
when we have dynamic sizing.
Also stops always initializing flat_scratch even when unused.
In the future we should stop emitting this unless flat instructions
are used to access private memory. For example this will initialize
it almost always on VI because flat is used for global access.
llvm-svn: 260658
Re-commit of r258951 after fixing layering violation.
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
llvm-svn: 259498
The AMDGPUPromoteAlloca pass was emitting the read.local.size
calls, which with HSA was incorrectly selected to reading from
the offset mesa uses off of the kernarg pointer.
Error on intrinsics which aren't supported by HSA, and start
emitting the correct IR to read the workgroup size
out of the dispatch pointer.
Also initialize the pass so it can be tested with opt, and
start moving towards not depending on the subtarget as an
argument.
Start emitting errors for the intrinsics not handled with HSA.
llvm-svn: 259297
Re-commit of r258951 after fixing layering violation.
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 259035
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
The implementation of DiagnosticInfoUnsupported::print must be in
lib/Codegen rather than in the existing file in lib/IR/ to avoid
introducing a dependency from IR to CodeGen.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 258951
I did my best to try to update all the uses in tests that
just happened to use the old ones to the newer intrinsics.
I'm not sure I got all of the immediate operand conversions
correct, since the value seems to have been ignored by the
old pattern but I don't think it really matters.
llvm-svn: 258787
Some of the special intrinsics now that now correspond to a instruction
also have special setting of some registers, e.g. llvm.SI.sendmsg sets
m0 as well as use s_sendmsg. Using these explicit register intrinsics
may be a better option.
Reading the exec mask and others may be useful for debugging. For this
I'm not sure this is entirely correct because we would want this to
be convergent, although it's possible this is already treated
sufficently conservatively.
llvm-svn: 258785
The intrinsic target prefix should match the target name
as it appears in the triple.
This is not yet complete, but gets most of the important ones.
llvm.AMDGPU.* intrinsics used by mesa and libclc are still handled
for compatability for now.
llvm-svn: 258557
Summary:
While working on uniform branching, I've hit a few cases where we emit
i1 SETCC operations.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D16233
llvm-svn: 258352
This breaks the tests that were meant for testing
64-bit inline immediates, so move those to shl where
they won't be broken up.
This should be repeated for the other related bit ops.
llvm-svn: 258095
Summary:
v2: Make ReturnsVoid private, so that I can another 8 lines of code and
look more productive.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16034
llvm-svn: 257622
Summary:
Return values can be stored in SGPRs (i32) and VGPRs (f32).
This will be used by functions which expect some bytecode or other binary to
be appended at the end. It allows defining in which registers the return
values will be stored.
v2: don't do this for compute shaders
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16033
llvm-svn: 257621
Summary:
With the ability to concatenate shader binaries, the limit of 15 no longer
applies.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16031
llvm-svn: 257592
Summary:
This allows Mesa to pass initial SPI_PS_INPUT_ADDR to LLVM.
The register assigns VGPR locations to PS inputs, while the ENA register
determines whether or not they are loaded.
Mesa needs to set some inputs as not-movable, so that a pixel shader prolog
binary appended at the beginning can assume where some inputs are.
v2: Make PSInputAddr private, because there is never enough silly getters
and setters for people to read.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm
Differential Revision: http://reviews.llvm.org/D16030
llvm-svn: 257591
The hardware instruction's output on 0 is -1 rather than 32.
Eliminate a test and select to -1. This removes an extra instruction
from the compatability function with HSAIL's firstbit instruction.
llvm-svn: 257352