To make the IR easier to analyze, this pass makes some minor transformations.
After that, even if it doesn't decide to optimize anything, it can't report that
it changed nothing and preserved all the analyses.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D109855
Nonfunctional commit fixing several minor spelling errors in llvm/lib/Target/AMDGPU header files.
Testing workflow as a new contributor.
Differential Revision: https://reviews.llvm.org/D109733
Skip stack accesses unless requested, as the memory profiler runtime
does not currently look at or report accesses for these addresses.
Differential Revision: https://reviews.llvm.org/D109868
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
SimplifyDemandedBits can turn srl into sra if the bits being shifted
in aren't demanded. This patch can recover the original sra in some cases.
I've renamed the tablegen class for detecting W users since the "overflowing operator"
term I originally borrowed from Operator.h does not include srl.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D109162
In https://reviews.llvm.org/D100481, forceful inline of all non-kernel
functions using lds was disabled since AMDGPULowerModuleLDS pass now handles
static lds. However that pass does not handle extern lds so non-kernel
functions using extern lds must sill be inline.
Reviewed By: hsmhsm, arsenm
Differential Revision: https://reviews.llvm.org/D109773
This makes some tests in vector-reductions-logical.ll more stable when
applying D108837.
The cost of branching is higher when vector ops are involved due to
potential SLP transformations.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108935
Introduce a new command-line flag `-swift-async-fp={auto|always|never}`
that controls how code generation sets the Swift extended async frame
info bit. There are three possibilities:
* `auto`: which determines how to set the bit based on deployment target, either
statically or dynamically via `swift_async_extendedFramePointerFlags`.
* `always`: the default, always set the bit statically, regardless of deployment
target.
* `never`: never set the bit, regardless of deployment target.
Patch by Doug Gregor <dgregor@apple.com>
Reviewed By: doug.gregor
Differential Revision: https://reviews.llvm.org/D109392
Change the asan-module pass into a MODULE_PASS_WITH_PARAMS in the
pass registry, and add a single parameter called 'kernel' that
can be set instead of having a special pass name 'kasan-module'
to trigger that special pass config.
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Split ThreadSanitizerPass into ThreadSanitizerPass (as a function
pass) and ModuleThreadSanitizerPass (as a module pass).
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Split MemorySanitizerPass into MemorySanitizerPass (as a function
pass) and ModuleMemorySanitizerPass (as a module pass).
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Recently a vulnerability issue is found in the implementation of VLLDM
instruction in the Arm Cortex-M33, Cortex-M35P and Cortex-M55. If the
VLLDM instruction is abandoned due to an exception when it is partially
completed, it is possible for subsequent non-secure handler to access
and modify the partial restored register values. This vulnerability is
identified as CVE-2021-35465.
The mitigation sequence varies between v8-m and v8.1-m as follows:
v8-m.main
---------
mrs r5, control
tst r5, #8 /* CONTROL_S.SFPA */
it ne
.inst.w 0xeeb00a40 /* vmovne s0, s0 */
1:
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
v8.1-m.main
-----------
vscclrm {vpr} /* Clear VPR. */
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
More details on
developer.arm.com/support/arm-security-updates/vlldm-instruction-security-vulnerability
Differential Revision: https://reviews.llvm.org/D109157
When expanding the non-secure call instruction we are emiting code
to clear the secure floating-point registers only if the targeted
architecture has floating-point support. The potential problem is
when the source code containing non-secure calls are built with
-mfloat-abi=soft but some other part of the system has been built
with -mfloat-abi=softfp (soft and softfp are compatible as they use
the same procedure calling standard). In this case floating-point
registers could leak to non-secure state as the non-secure won't
have cleared them assuming no floating point has been used.
Differential Revision: https://reviews.llvm.org/D109153
Alive2 for `{insert/extract}element`: https://alive2.llvm.org/ce/z/hwy_E-
Actually, no one file of test suite is touched by this change,
which means that is rare pattern not generated by frontend. But
it's worth being in place.
Differential Revision: https://reviews.llvm.org/D109236
If a loop count was initially represented by a 32b unsigned int in C
then the hardware-loop pass can recognise the loop guard and insert
the llvm.test.set.loop.iterations intrinsic. If this was instead a
unsigned short/char then clang inserts a zext instruction to expand
the loop count to an i32. This patch adds the necessary pattern
matching to enable the use of lvm.test.set.loop.iterations in those
cases.
Patch by: sherwin-dc
Differential Revision: https://reviews.llvm.org/D109631
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
The default register bank selection code for G_LOAD assumes that we ought to
use a FPR when the load is casted to a float/double.
For atomics, this isn't true; we should always use GPRs.
Without this patch, we crash in the following example:
https://godbolt.org/z/MThjas441
Also make the code a little more stylistically consistent while we're here.
Also test some other weird cast combinations as well.
Differential Revision: https://reviews.llvm.org/D109771
There's technically a difference in the logic used by these
findIntrinsicID and MachineInstr::getIntrinsicID, but it shouldn't
be a meaningful difference here, with G_INTRINSIC instructions.
getIntrinsicID's "first non-def" logic should be correct for those.
The doc comment for isPredecessor says:
Returns true if \p DefMI precedes \p UseMI or they are the same
instruction.
And dominates relies on that behavior for its own:
Returns true if \p DefMI dominates \p UseMI. By definition an
instruction dominates itself.
Make both statements correct by fixing isPredecessor.
Found by inspection.
PassBuilder.cpp is the slowest file to compile in LLVM.
When trying to test changes to pipelines, it takes a long time to recompile.
This doesn't actually speedup building PassBuilder.cpp itself since most
of the time is spent in other large/duplicated functions caused by
PassRegistry.def.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D109798
In particular, it couldn't handle cases where lookup table constant
expressions involved bitcasts. This does not seem to come up
frequently in C++, but comes up reasonably often in Rust via
`#[derive(Debug)]`.
Originally reported by pcwalton.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109565
This reverts commit 4ac4e52189.
There are couple of test failures, which needs update of the test cases.
Doing a clean revert and will recommit the change along with fixed
testcases.
Fix build bot failure in rG4ac4e521 caused due to assumeBundleBuilder
using new API (getUniqueUndroppableUser).
We now continue using the existing API for AssumeBundleBuilder
(getSingleUndroppableUser).
Sorry for the noise here.
Tests-Run: failing testcase passes.
The API was removed in 4ac4e52189 in favor of
getUniqueUndroppableUser.
However, this caused a buildbot failure in AbstractCallSiteTest.cpp,
which uses the API and the AbstractCallSite class requires a "use"
rather than a user.
Retain the API so that the unittest compiles and passes.
This patch allows sinking an instruction which can have multiple uses in a
single user. We were previously over-restrictive by looking for exactly one use,
rather than one user.
Also, the API for retrieving undroppable user has been updated accordingly since
in both usecases (Attributor and InstCombine), we seem to care about the user,
rather than the use.
Reviewed-By: nikic
Differential Revision: https://reviews.llvm.org/D109700
I was wondering how instcombine does on the examples in D109236,
and we're missing a basic transform:
inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
https://alive2.llvm.org/ce/z/z2aBu9
Note that there are several possible extensions of this fold
(see TODO comments).
Differential Revision: https://reviews.llvm.org/D109537
Add two levels of verification for MemorySSA: Fast and Full.
The defaults are kept the same. Full verification always occurs under
EXPENSIVE_CHECKS, but now it can also be requested in a specific pass for
debugging purposes.
Based off the worse case numbers generated by D103695, the AVX2/512 bit reversing/counting costs were higher than necessary (based off instruction counts instead of actual throughput).
Under some situations under Thumb1, we could be stuck in an infinite
loop recombining the same instruction. This puts a limit on that, not
combining SUBC with SUBE repeatedly.
This extends the reduction logic in the vectorizer to handle intrinsic
versions of min and max, both the floating point variants already
created by instcombine under fastmath and the integer variants from
D98152.
As a bonus this allows us to match a chain of min or max operations into
a single reduction, similar to how add/mul/etc work.
Differential Revision: https://reviews.llvm.org/D109645
When searching for hidden identity shuffles (added at rG41146bfe82aecc79961c3de898cda02998172e4b), only peek through bitcasts to the source operand if it is a vector type as well.
This is a first step towards addressing the last remaining limitation of
the VPlan version of sinkScalarOperands: the legacy version can
partially sink operands. For example, if a GEP has uniform users outside
the sink target block, then the legacy version will sink all scalar
GEPs, other than the one for lane 0.
This patch works towards addressing this case in the VPlan version by
detecting such cases and duplicating the sink candidate. All users
outside of the sink target will be updated to use the uniform clone.
Note that this highlights an issue with VPValue naming. If we duplicate
a replicate recipe, they will share the same underlying IR value and
both VPValues will have the same name ir<%gep>.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104254