Introduce support for lowering vector_type_cast to LLVM IR. It consists in
creating a new MemRef descriptor with the base pointer with the type that
corresponds to the lowered element type of the target memref. Since
`vector_type_cast` does not support dynamic shapes in the target type, no
dynamic size conversion is necessary.
This commit goes in the opposite direction of what is expected of LLVM IR
lowering: it should not be aware of all the other dialects. Instead, we should
have separate definitions for conversions in a global lowering framework.
However, this requires LLVM dialect to be implemented, which is currently
blocked by the absence of user-defined types. Implement the lowering anyway to
unblock end-to-end vectorization experiments.
PiperOrigin-RevId: 225887368
As MLIR moves towards dialect-specific types, a generic Type::getBitWidth does
not make sense for all of them. Even with the current type system, the bit
width is not defined (and causes the method in question to abort) for all
TensorFlow types.
This commit restricts the bit width definition to primitive standard types that
have a number of bits appearing verbatim in their type, i.e., integers and
floats. As a side effect, it delegates the decision on the bit width of the
`index` to the backends. Existing backends currently hardcode it to 64 bits.
The Type::getBitWidth method is replaced by Type::getIntOrFloatBitWidth that
only applies to integers and floats. The call sites are updated to use the new
method, where applicable, or rewritten so as not rely on it. Incidentally,
this fixes a utility method that did not account for memrefs being allowed to
have vectors as element types in the size computation.
As an observation, several places in the code use Type in places where a more
specific type could be used instead. Some of those are fixed by this commit.
PiperOrigin-RevId: 225844792
Introduce initial support for 1D vector operations. LLVM does not support
higher-dimensional vectors so the caller must make sure they don't appear in
the input MLIR. Handle the presence of higher-dimensional vectors by failing
gracefully.
Introduce the type conversion for 1D vector types and hook it up with the rest
of the type convresion system. Support "splat" constants for vector types. As
a side effect, this refactors constant operation emission by separating out
scalar integer constants into a separate case and by extracting out the helper
function for scalar float construction. Existing binary operations apply to
vectors transparently.
PiperOrigin-RevId: 225172349
This simplifies call-sites returning true after emitting an error. After the
conversion, dropped braces around single statement blocks as that seems more
common.
Also, switched to emitError method instead of emitting Error kind using the
emitDiagnostic method.
TESTED with existing unit tests
PiperOrigin-RevId: 224527868
Unlike MLIR, LLVM IR does not support functions that return multiple values.
Simulate this by packing values into the LLVM structure type in the same order
as they appear in the MLIR return. If the function returns only a single
value, return it directly without packing.
PiperOrigin-RevId: 223964886
Add support for translating 'dim' opreation on MemRefs to LLVM IR. For a
static size, this operation merely defines an LLVM IR constant value that may
not appear in the output IR if not used (and had not been removed before by
DCE). For a dynamic size, this operation is translated into an access to the
MemRef descriptor that contains the dynamic size.
PiperOrigin-RevId: 223160774
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions. Affine map compositions and
non-default memory spaces are NOT YET supported.
Lowered code needs to handle potentially dynamic sizes of the MemRef. To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together. A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes. The type of these elements is that of
MLIR index lowered to LLVM. For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`. While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure. This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.
Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript. While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation. A subsequent optimization pass may eliminate them if
necessary.
MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller. These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future. Allocation and
deallocation instructions take care of casting the pointers. Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation. It further emits instructions that compute the dynamic
amount of memory to allocate in bytes. Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor. Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it. The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.
MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value. This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures. A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.
PiperOrigin-RevId: 223134883
Initial restricted implementaiton of the MLIR to LLVM IR translation.
Introduce a new flow into the mlir-translate tool taking an MLIR module
containing CFG functions only and producing and LLVM IR module. The MLIR
features supported by the translator are as follows:
- primitive and function types;
- integer constants;
- cfg and ext functions with 0 or 1 return values;
- calls to these functions;
- basic block conversion translation of arguments to phi nodes;
- conversion between arguments of the first basic block and function arguments;
- (conditional) branches;
- integer addition and comparison operations.
Are NOT supported:
- vector and tensor types and operations on them;
- memrefs and operations on them;
- allocations;
- functions returning multiple values;
- LLVM Module triple and data layout (index type is hardcoded to i64).
Create a new MLIR library and place it under lib/Target/LLVMIR. The "Target"
library group is similar to the one present in LLVM and is intended to contain
all future public MLIR translation targets.
The general flow of MLIR to LLVM IR convresion will include several lowering
and simplification passes on the MLIR itself in order to make the translation
as simple as possible. In particular, ML functions should be transformed to
CFG functions by the recently introduced pass, operations on structured types
will be converted to sequences of operations on primitive types, complex
operations such as affine_apply will be converted into sequence of primitive
operations, primitive operations themselves may eventually be converted to an
LLVM dialect that uses LLVM-like operations.
Introduce the first translation test so that further changes make sure the
basic translation functionality is not broken.
PiperOrigin-RevId: 222400112