Given loops `L1` and `L2` with AddRecs `AR1` and `AR2` varying in them respectively.
When identifying loop disposition of `AR2` w.r.t. `L1`, we only say that it is varying if
`L1` contains `L2`. But there is also a possible situation where `L1` and `L2` are
consecutive sibling loops within the parent loop. In this case, `AR2` is also varying
w.r.t. `L1`, but we don't correctly identify it.
It can lead, for exaple, to attempt of incorrect folding. Consider:
AR1 = {a,+,b}<L1>
AR2 = {c,+,d}<L2>
EXAR2 = sext(AR1)
MUL = mul AR1, EXAR2
If we incorrectly assume that `EXAR2` is invariant w.r.t. `L1`, we can end up trying to
construct something like: `{a * {c,+,d}<L2>,+,b * {c,+,d}<L2>}<L1>`, which is incorrect
because `AR2` is not available on entrance of `L1`.
Both situations "`L1` contains `L2`" and "`L1` preceeds sibling loop `L2`" can be handled
with one check: "header of `L1` dominates header of `L2`". This patch replaces the old
insufficient check with this one.
Differential Revision: https://reviews.llvm.org/D39453
llvm-svn: 318819
Summary:
Add the following heuristics for irreducible loop metadata:
- When an irreducible loop header is missing the loop header weight metadata,
give it the minimum weight seen among other headers.
- Annotate indirectbr targets with the loop header weight metadata (as they are
likely to become irreducible loop headers after indirectbr tail duplication.)
These greatly improve the accuracy of the block frequency info of the Python
interpreter loop (eg. from ~3-16x off down to ~40-55% off) and the Python
performance (eg. unpack_sequence from ~50% slower to ~8% faster than GCC) due to
better register allocation under PGO.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39980
llvm-svn: 318693
llvm.invariant.group.barrier may accept pointers to arbitrary address space.
This patch let it accept pointers to i8 in any address space and returns
pointer to i8 in the same address space.
Differential Revision: https://reviews.llvm.org/D39973
llvm-svn: 318413
This patch contains more accurate cost of interelaved load\store of stride 2 for the types int64\double on AVX2.
Reviewers: delena, RKSimon, craig.topper, dorit
Reviewed By: dorit
Differential Revision: https://reviews.llvm.org/D40008
llvm-svn: 318385
Summary:
This fixes PR35241.
When using byval, the data is effectively copied as part of the call
anyway, so the pointer returned by the alloca will not be leaked to the
callee and thus there is no reason to issue a warning.
Reviewers: rnk
Reviewed By: rnk
Subscribers: Ka-Ka, llvm-commits
Differential Revision: https://reviews.llvm.org/D40009
llvm-svn: 318279
Summary:
If a compare instruction is same or inverse of the compare in the
branch of the loop latch, then return a constant evolution node.
This shall facilitate computations of loop exit counts in cases
where compare appears in the evolution chain of induction variables.
Will fix PR 34538
Reviewers: sanjoy, hfinkel, junryoungju
Reviewed By: sanjoy, junryoungju
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38494
llvm-svn: 318050
Recommit:
This patch contains update of the costs of interleaved loads of v8f32 of stride 3 and 8.
fixed the location of the lit test it works with make check-all.
Differential Revision: https://reviews.llvm.org/D39403
llvm-svn: 317471
reverted my changes will be committed later after fixing the failure
This patch contains update of the costs of interleaved loads of v8f32 of stride 3 and 8.
Differential Revision: https://reviews.llvm.org/D39403
llvm-svn: 317433
This patch contains update of the costs of interleaved loads of v8f32 of stride 3 and 8.
Differential Revision: https://reviews.llvm.org/D39403
llvm-svn: 317432
Summary:
Currently the block frequency analysis is an approximation for irreducible
loops.
The new irreducible loop metadata is used to annotate the irreducible loop
headers with their header weights based on the PGO profile (currently this is
approximated to be evenly weighted) and to help improve the accuracy of the
block frequency analysis for irreducible loops.
This patch is a basic support for this.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39028
llvm-svn: 317278
Summary:
Compute the strongly connected components of the CFG and fall back to
use these for blocks that are in loops that are not detected by
LoopInfo when computing loop back-edge and exit branch probabilities.
Reviewers: dexonsmith, davidxl
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D39385
llvm-svn: 317094
Max backedge taken count is always expected to be a constant; and this is
usually true by construction -- it is a SCEV expression with constant inputs.
However, if the max backedge expression ends up being computed to be a udiv with
a constant zero denominator[0], SCEV does not fold the result to a constant
since there is no constant it can fold it to (SCEV has no representation for
"infinity" or "undef").
However, in computeMaxBECountForLT we already know the denominator is positive,
and thus at least 1; and we can use this fact to avoid dividing by zero.
[0]: We can end up with a constant zero denominator if the signed range of the
stride is more precise than the unsigned range.
llvm-svn: 316615
Summary:
Got asserts in llvm::CastInst::getCastOpcode saying:
`DestBits == SrcBits && "Illegal cast to vector (wrong type or size)"' failed.
Problem seemed to be that llvm::ConstantFoldCastInstruction did
not handle ptrtoint cast of a getelementptr returning a vector
correctly. I assume such situations are quite rare, since the
GEP needs to be considered as a constant value (base pointer
being null).
The solution used here is to simply avoid the constant fold
of ptrtoint when the value is a vector. It is not supported,
and by bailing out we do not fail on assertions later on.
Reviewers: craig.topper, majnemer, davide, filcab, efriedma
Reviewed By: efriedma
Subscribers: efriedma, filcab, llvm-commits
Differential Revision: https://reviews.llvm.org/D38546
llvm-svn: 316430
This patch adds accurate instructions cost.
The formula presents two cases(stride 3 and stride 4) and calculates the cost according to the VF and stride.
Reviewers:
1. delena
2. Farhana
3. zvi
4. dorit
5. Ayal
Differential Revision: https://reviews.llvm.org/D38762
Change-Id: If4cfbd4ac0e63694e8144cb78c7fa34850647ff7
llvm-svn: 316072
Summary:
If a compare instruction is same or inverse of the compare in the
branch of the loop latch, then return a constant evolution node.
Currently scope of evaluation is limited to SCEV computation for
PHI nodes.
This shall facilitate computations of loop exit counts in cases
where compare appears in the evolution chain of induction variables.
Will fix PR 34538
Reviewers: sanjoy, hfinkel, junryoungju
Reviewed By: junryoungju
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38494
llvm-svn: 316054
Summary:
This patch teaches SCEV to calculate the maxBECount when the end bound
of the loop can vary. Note that we cannot calculate the exactBECount.
This will only be done when both conditions are satisfied:
1. the loop termination condition is strictly LT.
2. the IV is proven to not overflow.
This provides more information to users of SCEV and can be used to
improve identification of finite loops.
Reviewers: sanjoy, mkazantsev, silviu.baranga, atrick
Reviewed by: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38825
llvm-svn: 315683
Significantly reduces performancei (~30%) of gipfeli
(https://github.com/google/gipfeli)
I have not yet managed to reproduce this regression with the open-source
version of the benchmark on github, but will work with others to get a
reproducer to you later today.
llvm-svn: 315680
Summary:
If the pointer width is 32 bits and the calculated GEP offset is
negative, we call APInt::getLimitedValue(), which does a
*zero*-extension of the offset. That's wrong -- we should do an sext.
Fixes a bug introduced in rL314362 and found by Evgeny Astigeevich.
Reviewers: efriedma
Subscribers: sanjoy, javed.absar, llvm-commits, eastig
Differential Revision: https://reviews.llvm.org/D38557
llvm-svn: 314935
Function isLoweredToCall can only accept non-null function pointer, but a function pointer can be null for indirect function call. So check it before calling isLoweredToCall from getInstructionLatency.
Differential Revision: https://reviews.llvm.org/D38204
llvm-svn: 314927
Recommitting r314517 with the fix for handling ConstantExpr.
Original commit message:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing
mode in the target. However, since it doesn't check its actual users, it will
return FREE even in cases where the GEP cannot be folded away as a part of
actual addressing mode. For example, if an user of the GEP is a call
instruction taking the GEP as a parameter, then the GEP may not be folded in
isel.
llvm-svn: 314923
Summary:
When checking if a constant expression is a noop cast we fetched the
IntPtrType by doing DL->getIntPtrType(V->getType())). However, there can
be cases where V doesn't return a pointer, and then getIntPtrType()
triggers an assertion.
Now we pass DataLayout to isNoopCast so the method itself can determine
what the IntPtrType is.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D37894
llvm-svn: 314763
This came out of a recent discussion on llvm-dev
(https://reviews.llvm.org/D38042). Currently the Verifier will strip
the debug info metadata from a module if it finds the dbeug info to be
malformed. This feature is very valuable since it allows us to improve
the Verifier by making it stricter without breaking bcompatibility,
but arguable the Verifier pass should not be modifying the IR. This
patch moves the stripping of broken debug info into AutoUpgrade
(UpgradeDebugInfo to be precise), which is a much better location for
this since the stripping of malformed (i.e., produced by older, buggy
versions of Clang) is a (harsh) form of AutoUpgrade.
This change is mostly NFC in nature, the one big difference is the
behavior when LLVM module passes are introducing malformed debug
info. Prior to this patch, a NoAsserts build would have printed a
warning and stripped the debug info, after this patch the Verifier
will report a fatal error. I believe this behavior is actually more
desirable anyway.
Differential Revision: https://reviews.llvm.org/D38184
llvm-svn: 314699
Summary:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing mode in the target.
However, since it doesn't check its actual users, it will return FREE even in cases
where the GEP cannot be folded away as a part of actual addressing mode.
For example, if an user of the GEP is a call instruction taking the GEP as a parameter,
then the GEP may not be folded in isel.
Reviewers: hfinkel, efriedma, mcrosier, jingyue, haicheng
Reviewed By: hfinkel
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38085
llvm-svn: 314517
JumpThreading now preserves dominance and lazy value information across the
entire pass. The pass manager is also informed of this preservation with
the goal of DT and LVI being recalculated fewer times overall during
compilation.
This change prepares JumpThreading for enhanced opportunities; particularly
those across loop boundaries.
Patch by: Brian Rzycki <b.rzycki@samsung.com>,
Sebastian Pop <s.pop@samsung.com>
Differential revision: https://reviews.llvm.org/D37528
llvm-svn: 314435
Summary:
This avoids C++ UB if the GEP is weird and the calculation overflows
int64_t, and it's also observable in the cost model's results.
Such GEPs are almost surely not valid pointers, but LLVM nonetheless
generates them sometimes.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38337
llvm-svn: 314362
Usually an intrinsic is a simple target instruction, it should have a small latency. A real function call has much larger latency. So handle the intrinsic call in function getInstructionLatency().
Differential Revision: https://reviews.llvm.org/D38104
llvm-svn: 314003
Static alloca usually doesn't generate any machine instructions, so it has 0 cost.
Differential Revision: https://reviews.llvm.org/D37879
llvm-svn: 313410
For instructions that unlikely generate machine instructions, they should also have 0 latency.
Differential Revision: https://reviews.llvm.org/D37833
llvm-svn: 313288
Summary:
LAA can only emit run-time alias checks for pointers with affine AddRec
SCEV expressions. However, non-AddRecExprs can be now be converted to
affine AddRecExprs using SCEV predicates.
This change tries to add the minimal set of SCEV predicates in order
to enable run-time alias checking.
Reviewers: anemet, mzolotukhin, mkuper, sanjoy, hfinkel
Reviewed By: hfinkel
Subscribers: mssimpso, Ayal, dorit, roman.shirokiy, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D17080
llvm-svn: 313012
Current TargetTransformInfo can support throughput cost model and code size model, but sometimes we also need instruction latency cost model in different optimizations. Hal suggested we need a single public interface to query the different cost of an instruction. So I proposed following interface:
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize ///< Instruction code size.
};
int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const;
All clients should mainly use this function to query the cost of an instruction, parameter <kind> specifies the desired cost model.
This patch also provides a simple default implementation of getInstructionLatency.
The default getInstructionLatency provides latency numbers for only small number of instruction classes, those latency numbers are only reasonable for modern OOO processors. It can be extended in following ways:
Add more detail into this function.
Add getXXXLatency function and call it from here.
Implement target specific getInstructionLatency function.
Differential Revision: https://reviews.llvm.org/D37170
llvm-svn: 312832
Summary:
Add patterns for
fptoui <16 x float> to <16 x i8>
fptoui <16 x float> to <16 x i16>
Reviewers: igorb, delena, craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37505
llvm-svn: 312704
In LLVM IR the following code:
%r = urem <ty> %t, %b
is equivalent to
%q = udiv <ty> %t, %b
%s = mul <ty> nuw %q, %b
%r = sub <ty> nuw %t, %q ; (t / b) * b + (t % b) = t
As UDiv, Mul and Sub are already supported by SCEV, URem can be implemented
with minimal effort using that relation:
%r --> (-%b * (%t /u %b)) + %t
We implement two special cases:
- if %b is 1, the result is always 0
- if %b is a power-of-two, we produce a zext/trunc based expression instead
That is, the following code:
%r = urem i32 %t, 65536
Produces:
%r --> (zext i16 (trunc i32 %a to i16) to i32)
Note that while this helps get a tighter bound on the range analysis and the
known-bits analysis, this exposes some normalization shortcoming of SCEVs:
%div = udim i32 %a, 65536
%mul = mul i32 %div, 65536
%rem = urem i32 %a, 65536
%add = add i32 %mul, %rem
Will usually not be reduced.
llvm-svn: 312329
Summary:
This patch teaches PostDominatorTree about infinite loops. It is built on top of D29705 by @dberlin which includes a very detailed motivation for this change.
What's new is that the patch also teaches the incremental updater how to deal with reverse-unreachable regions and how to properly maintain and verify tree roots. Before that, the incremental algorithm sometimes ended up preserving reverse-unreachable regions after updates that wouldn't appear in the tree if it was constructed from scratch on the same CFG.
This patch makes the following assumptions:
- A sequence of updates should produce the same tree as a recalculating it.
- Any sequence of the same updates should lead to the same tree.
- Siblings and roots are unordered.
The last two properties are essential to efficiently perform batch updates in the future.
When it comes to the first one, we can decide later that the consistency between freshly built tree and an updated one doesn't matter match, as there are many correct ways to pick roots in infinite loops, and to relax this assumption. That should enable us to recalculate postdominators less frequently.
This patch is pretty conservative when it comes to incremental updates on reverse-unreachable regions and ends up recalculating the whole tree in many cases. It should be possible to improve the performance in many cases, if we decide that it's important enough.
That being said, my experiments showed that reverse-unreachable are very rare in the IR emitted by clang when bootstrapping clang. Here are the statistics I collected by analyzing IR between passes and after each removePredecessor call:
```
# functions: 52283
# samples: 337609
# reverse unreachable BBs: 216022
# BBs: 247840796
Percent reverse-unreachable: 0.08716159869015269 %
Max(PercRevUnreachable) in a function: 87.58620689655172 %
# > 25 % samples: 471 ( 0.1395104988314885 % samples )
... in 145 ( 0.27733680163724345 % functions )
```
Most of the reverse-unreachable regions come from invalid IR where it wouldn't be possible to construct a PostDomTree anyway.
I would like to commit this patch in the next week in order to be able to complete the work that depends on it before the end of my internship, so please don't wait long to voice your concerns :).
Reviewers: dberlin, sanjoy, grosser, brzycki, davide, chandlerc, hfinkel
Reviewed By: dberlin
Subscribers: nhaehnle, javed.absar, kparzysz, uabelho, jlebar, hiraditya, llvm-commits, dberlin, david2050
Differential Revision: https://reviews.llvm.org/D35851
llvm-svn: 310940
ValueTracking has to strike a balance when attempting to propagate information
backwards from assumes, because if the information is trivially propagated
backwards, it can appear to LLVM that the assumption is known to be true, and
therefore can be removed.
This is sound (because an assumption has no semantic effect except for causing
UB), but prevents the assume from allowing further optimizations.
The isEphemeralValueOf check exists to try and prevent this issue by not
removing the source of an assumption. This tries to make it a little bit more
general to handle the case of side-effectful instructions, such as in
%0 = call i1 @get_val()
%1 = xor i1 %0, true
call void @llvm.assume(i1 %1)
Patch by Ariel Ben-Yehuda, thanks!
Differential Revision: https://reviews.llvm.org/D36590
llvm-svn: 310859
causing compile time issues.
Moreover, the patch *deleted* the flag in addition to changing the
default, and links to a code review that doesn't even discuss the flag
and just has an update to a Clang test case.
I've followed up on the commit thread to ask for numbers on compile time
at this point, leaving the flag in place until things stabilize, and
pointing at specific code that seems to exhibit excessive compile time
with this patch.
Original commit message for r310583:
"""
[ValueTracking] Enabling ValueTracking patch by default (recommit). Part 2.
The original patch was an improvement to IR ValueTracking on
non-negative integers. It has been checked in to trunk (D18777,
r284022). But was disabled by default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
""""
llvm-svn: 310816