Commit Graph

14 Commits

Author SHA1 Message Date
Tim Northover fd7e424935 CodeGen: extend f16 conversions to permit types > float.
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.

During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.

Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.

llvm-svn: 213248
2014-07-17 10:51:23 +00:00
Justin Holewinski b926d9d446 [NVPTX] Fix handling of ldg/ldu intrinsics.
The address space of the pointer must be global (1) for these intrinsics.  There must also be alignment metadata attached to the intrinsic calls, e.g.

%val = tail call i32 @llvm.nvvm.ldu.i.global.i32.p1i32(i32 addrspace(1)* %ptr), !align !0

!0 = metadata !{i32 4}

llvm-svn: 211939
2014-06-27 18:35:51 +00:00
Justin Holewinski 832e09b4d9 [NVPTX] Add support for efficient rotate instructions on SM 3.2+
llvm-svn: 211934
2014-06-27 18:35:33 +00:00
Justin Holewinski 7be57de6b8 [NVPTX] Add missing isel patterns for 64-bit atomics
llvm-svn: 211933
2014-06-27 18:35:30 +00:00
Justin Holewinski 10c25968d8 [NVPTX] Add support for isspacep instruction
llvm-svn: 211931
2014-06-27 18:35:24 +00:00
Justin Holewinski 124fc1951f [NVPTX] Add support for envreg reads
llvm-svn: 211930
2014-06-27 18:35:21 +00:00
Justin Holewinski 30d56a7b86 [NVPTX] Add preliminary intrinsics and codegen support for textures/surfaces
This commit adds intrinsics and codegen support for the surface read/write and texture read instructions that take an explicit sampler parameter. Codegen operates on image handles at the PTX level, but falls back to direct replacement of handles with kernel arguments if image handles are not enabled. Note that image handles are explicitly disabled for all target architectures in this change (to be enabled later).

llvm-svn: 205907
2014-04-09 15:39:15 +00:00
Justin Holewinski e40e929eb1 [NVPTX] Add isel patterns for [reg+offset] form of ldg/ldu.
llvm-svn: 185329
2013-07-01 12:58:52 +00:00
Justin Holewinski dc5e3b68f5 [NVPTX] Clean up comparison/select/convert patterns and factor out PTX instructions from their patterns
Test case is no breakage

llvm-svn: 185175
2013-06-28 17:58:04 +00:00
Justin Holewinski f8f7091722 [NVPTX] Remove i8 register class. PTX support for i8 (.b8, .u8, .s8) is rather poor and we're better off just ignoring it and letting LLVM expand all i8 ops out to i16.
llvm-svn: 185174
2013-06-28 17:57:59 +00:00
Justin Holewinski 48f4ad3fc0 [NVPTX] Add @llvm.nvvm.sqrt.f() intrinsic
llvm-svn: 182394
2013-05-21 16:51:30 +00:00
Justin Holewinski 01f89f0428 [NVPTX] Add GenericToNVVM IR converter to better handle idiomatic LLVM IR inputs
This converter currently only handles global variables in address space 0. For
these variables, they are promoted to address space 1 (global memory), and all
uses are updated to point to the result of a cvta.global instruction on the new
variable.

The motivation for this is address space 0 global variables are illegal since we
cannot declare variables in the generic address space.  Instead, we place the
variables in address space 1 and explicitly convert the pointer to address
space 0. This is primarily intended to help new users who expect to be able to
place global variables in the default address space.

llvm-svn: 182254
2013-05-20 12:13:32 +00:00
Justin Holewinski be8dc6499a [NVPTX] Disable vector registers
Vectors were being manually scalarized by the backend.  Instead,
let the target-independent code do all of the work.  The manual
scalarization was from a time before good target-independent support
for scalarization in LLVM. However, this forces us to specially-handle
vector loads and stores, which we can turn into PTX instructions that
produce/consume multiple operands.

llvm-svn: 174968
2013-02-12 14:18:49 +00:00
Justin Holewinski ae556d3ef7 This patch adds a new NVPTX back-end to LLVM which supports code generation for NVIDIA PTX 3.0. This back-end will (eventually) replace the current PTX back-end, while maintaining compatibility with it.
The new target machines are:

nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX

The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.

NV_CONTRIB

llvm-svn: 156196
2012-05-04 20:18:50 +00:00