There's been long-standing confusion over the role of these two options. This
commit makes the necessary changes to differentiate them clearly, following up
from r198936.
MicrosoftExt (aka. fms-extensions):
Enable largely unobjectionable Microsoft language extensions to ease
portability. This mode, also supported by gcc, is used for building software
like FreeBSD and Linux kernel extensions that share code with Windows drivers.
MSVCCompat (aka. -fms-compatibility, formerly MicrosoftMode):
Turn on a special mode supporting 'heinous' extensions for drop-in
compatibility with the Microsoft Visual C++ product. Standards-compilant C and
C++ code isn't guaranteed to work in this mode. Implies MicrosoftExt.
Note that full -fms-compatibility mode is currently enabled by default on the
Windows target, which may need tuning to serve as a reasonable default.
See cfe-commits for the full discourse, thread 'r198497 - Move MS predefined
type_info out of InitializePredefinedMacros'
No change in behaviour.
llvm-svn: 199209
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
- reduce default buffer size to 64, which will still be large enough to
hold any property names found in the wild.
- get rid of the /*static*/ comments.
llvm-svn: 183697
- factor the name construction part out from constructSetterName
- rename constructSetterName to the more appropriate constructSetterSelector
no functionality change intended.
rdar://problem/14035789
llvm-svn: 183582
Typo correction for an unqualified name needs to walk through all of the identifier tables of all modules.
When we have a global index, just walk its identifier table only.
rdar://13425732
llvm-svn: 179730
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
Summary: Passes all tests (+ the new one with code completion), but needs a thorough review in part related to modules.
Reviewers: doug.gregor
Reviewed By: alexfh
CC: cfe-commits, rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D41
llvm-svn: 164610
that bridging between the two is free. Saves ~4k of code size,
although I don't see any measurable performance difference
(unfortunately).
llvm-svn: 156187
IndentifierTable::get() and into IdentifierTable's constructor.
This gets a 0.7% reducing on lexing time for Cocoa.h, and
about the same for PCH generation.
llvm-svn: 151854
modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
AST file more lazy, so that we don't eagerly load that information for
all known identifiers each time a new AST file is loaded. The eager
reloading made some sense in the context of precompiled headers, since
very few identifiers were defined before PCH load time. With modules,
however, a huge amount of code can get parsed before we see an
@import, so laziness becomes important here.
The approach taken to make this information lazy is fairly simple:
when we load a new AST file, we mark all of the existing identifiers
as being out-of-date. Whenever we want to access information that may
come from an AST (e.g., whether the identifier has a macro definition,
or what top-level declarations have that name), we check the
out-of-date bit and, if it's set, ask the AST reader to update the
IdentifierInfo from the AST files. The update is a merge, and we now
take care to merge declarations before/after imports with declarations
from multiple imports.
The results of this optimization are fairly dramatic. On a small
application that brings in 14 non-trivial modules, this takes modules
from being > 3x slower than a "perfect" PCH file down to 30% slower
for a full rebuild. A partial rebuild (where the PCH file or modules
can be re-used) is down to 7% slower. Making the PCH file just a
little imperfect (e.g., adding two smallish modules used by a bunch of
.m files that aren't in the PCH file) tips the scales in favor of the
modules approach, with 24% faster partial rebuilds.
This is just a first step; the lazy scheme could possibly be improved
by adding versioning, so we don't search into modules we already
searched. Moreover, we'll need similar lazy schemes for all of the
other lookup data structures, such as DeclContexts.
llvm-svn: 143100
include guards don't show up as macro definitions in every translation
unit that imports a module. Macro definitions can, however, be
exported with the intentionally-ugly #__export_macro__
directive. Implement this feature by not even bothering to serialize
non-exported macros to a module, because clients of that module need
not (should not) know that these macros even exist.
llvm-svn: 138943