They are not used by anything yet, but a subsequent commit will start
using them for image ops that return 5 dwords.
Differential Revision: https://reviews.llvm.org/D58903
Change-Id: I63e1904081e39a6d66e4eb96d51df25ad399d271
llvm-svn: 356735
Added support for dwordx3 for most load/store types, but not DS, and not
intrinsics yet.
SI (gfx6) does not have dwordx3 instructions, so they are not enabled
there.
Some of this patch is from Matt Arsenault, also of AMD.
Differential Revision: https://reviews.llvm.org/D58902
Change-Id: I913ef54f1433a7149da8d72f4af54dbb13436bd9
llvm-svn: 356659
Allow the clamp modifier on vop3 int arithmetic instructions in assembly
and disassembly.
This involved adding a clamp operand to the affected instructions in MIR
and MC, and thus having to fix up several places in codegen and MIR
tests.
Differential Revision: https://reviews.llvm.org/D59267
Change-Id: Ic7775105f02a985b668fa658a0cd7837846a534e
llvm-svn: 356399
This commit allows v_cndmask_b32_e64 with abs, neg source
modifiers on src0, src1 to be assembled and disassembled.
This does appear to be allowed, even though they are floating point
modifiers and the operand type is b32.
To do this, I added src0_modifiers and src1_modifiers to the
MachineInstr, which involved fixing up several places in codegen and mir
tests.
Differential Revision: https://reviews.llvm.org/D59191
Change-Id: I69bf4a8c73ebc65744f6110bb8fc4e937d79fbea
llvm-svn: 356398
Summary:
- During the fixing of SGPR copying from VGPR, ensure users of SCC is
properly propagated, i.e.
* only propagate through live def of SCC,
* skip the SCC-def inst itself, and
* stop the propagation on the other SCC-def inst after checking its
SCC-use first.
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59362
llvm-svn: 356258
This was checking the wrong operands for the base register and the
offsets. The indexes are shifted by the number of output registers
from the machine instruction definition, and the chain is moved to the
end.
llvm-svn: 355722
Summary:
This is to fix a memory dependence bug in LoadStoreOptimizer.
Reviewers:
arsenm, rampitec
Differential Revision:
https://reviews.llvm.org/D58295
llvm-svn: 354295
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Differential revision: https://reviews.llvm.org/D55444
dpp move with uses and old reg initializer should be in the same BB.
bound_ctrl:0 is only considered when bank_mask and row_mask are fully enabled (0xF). Otherwise the old register value is checked for identity.
Added add, subrev, and, or instructions to the old folding function.
Kill flag is cleared for the src0 (DPP register) as it may be copied into more than one user.
The pass is still disabled by default.
llvm-svn: 353513
I found a really strange WWM issue through a very convoluted shader that
essentially boils down to a bug in SIInstrInfo where canReadVGPR did not
correctly identify that WWM is like a copy and can have a VGPR as its
source.
Differential Revision: https://reviews.llvm.org/D56002
llvm-svn: 352500
Since these pass the pointer in m0 unlike other DS instructions, these
need to worry about whether the address is uniform or not. This
assumes the address is dynamically uniform, and just uses
readfirstlane to get a copy into an SGPR.
I don't know if these have the same 16-bit add for the addressing mode
offset problem on SI or not, but I've just assumed they do.
Also includes some misc. changes to avoid test differences between the
LDS and GDS versions.
llvm-svn: 352422
Fixes two problems with GCNHazardRecognizer:
1. It only scans up to 5 instructions emitted earlier.
2. It does not take control flow into account. An earlier instruction
from the previous basic block is not necessarily a predecessor.
At the same time a real predecessor block is not scanned.
The patch provides a way to distinguish between scheduler and
hazard recognizer mode. It is OK to work with emitted instructions
in the scheduler because we do not really know what will be emitted
later and its order. However, when pass works as a hazard recognizer
the schedule is already finalized, and we have full access to the
instructions for the whole function, so we can properly traverse
predecessors and their instructions.
Differential Revision: https://reviews.llvm.org/D56923
llvm-svn: 351759
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
This re-submit of the change also includes a slight modification in
SIISelLowering.cpp to work-around a compiler bug for the powerpc_le
platform that caused a buildbot failure on a previous submission.
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
Work around for ppcle compiler bug
Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b
llvm-svn: 351054
Fixed issue with identity values and other cases, f32/f16 identity values to be added later. fma/mac instructions is disabled for now.
Test is fully reworked, added comments. Other fixes:
1. dpp move with uses and old reg initializer should be in the same BB.
2. bound_ctrl:0 is only considered when bank_mask and row_mask are fully enabled (0xF). Othervise the old register value is checked for identity.
3. Added add, subrev, and, or instructions to the old folding function.
4. Kill flag is cleared for the src0 (DPP register) as it may be copied into more than one user.
Differential revision: https://reviews.llvm.org/D55444
llvm-svn: 350721
The introduction of S_{ADD|SUB}_U64_PSEUDO instructions which are decomposed
into VOP3 instruction pairs for S_ADD_U64_PSEUDO:
V_ADD_I32_e64
V_ADDC_U32_e64
and for S_SUB_U64_PSEUDO
V_SUB_I32_e64
V_SUBB_U32_e64
preclude the use of SDWA to encode a constant.
SDWA: Sub-Dword addressing is supported on VOP1 and VOP2 instructions,
but not on VOP3 instructions.
We desire to fold the bit-and operand into the instruction encoding
for the V_ADD_I32 instruction. This requires that we transform the
VOP3 into a VOP2 form of the instruction (_e32).
%19:vgpr_32 = V_AND_B32_e32 255,
killed %16:vgpr_32, implicit $exec
%47:vgpr_32, %49:sreg_64_xexec = V_ADD_I32_e64
%26.sub0:vreg_64, %19:vgpr_32, implicit $exec
%48:vgpr_32, dead %50:sreg_64_xexec = V_ADDC_U32_e64
%26.sub1:vreg_64, %54:vgpr_32, killed %49:sreg_64_xexec, implicit $exec
which then allows the SDWA encoding and becomes
%47:vgpr_32 = V_ADD_I32_sdwa
0, %26.sub0:vreg_64, 0, killed %16:vgpr_32, 0, 6, 0, 6, 0,
implicit-def $vcc, implicit $exec
%48:vgpr_32 = V_ADDC_U32_e32
0, %26.sub1:vreg_64, implicit-def $vcc, implicit $vcc, implicit $exec
Differential Revision: https://reviews.llvm.org/D54882
llvm-svn: 348132
The identity ~(x ^ y) == (~x ^ y) == (x ^ ~y) allows XNOR (XOR/NOT) to turn into NOT/XOR. Handling this case with its own split means we can make the NOT remain in the scalar unit. Previously, we split 64-bit XNOR into two 32-bit XNOR, then lowered. Now, we get three instructions (s_not, v_xor, v_xor) rather than four in the case where either of the sources is a scalar 64-bit.
Add test cases to xnor.ll to attempt XNOR Vx, Sy and XNOR Sx, Vy. Also adding test that uses the opposite identity such that (~x ^ y) on the scalar unit (or vector for gfx906) can generate XNOR. This already worked, but I didn't see a test for it.
Differential: https://reviews.llvm.org/D55071
llvm-svn: 348075
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 348050
Introduces DPP pseudo instructions and the pass that combines DPP mov with subsequent uses.
Differential revision: https://reviews.llvm.org/D53762
llvm-svn: 347993
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
This patch adds support for S_ANDN2, S_ORN2 32-bit and 64-bit instructions and adds splits to move them to the vector unit (for which there is no equivalent instruction). It modifies the way that the more complex scalar instructions are lowered to vector instructions by first breaking them down to sequences of simpler scalar instructions which are then lowered through the existing code paths. The pattern for S_XNOR has also been updated to apply inversion to one input rather than the output of the XOR as the result is equivalent and may allow leaving the NOT instruction on the scalar unit.
A new tests for NAND, NOR, ANDN2 and ORN2 have been added, and existing tests now hit the new instructions (and have been modified accordingly).
Differential: https://reviews.llvm.org/D54714
llvm-svn: 347877
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
Currently, instructions doing memory accesses through a base operand that is
not a register can not be analyzed using `TII::getMemOpBaseRegImmOfs`.
This means that functions such as `TII::shouldClusterMemOps` will bail
out on instructions using an FI as a base instead of a register.
The goal of this patch is to refactor all this to return a base
operand instead of a base register.
Then in a separate patch, I will add FI support to the mem op clustering
in the MachineScheduler.
Differential Revision: https://reviews.llvm.org/D54846
llvm-svn: 347746
It's possible in some cases to have a restore present
without a corresponding spill. Due to an apparent bug
in D54366 <https://reviews.llvm.org/D54366>, only the
restore for a register was emitted. It's probably
always a bug for this to happen, but due to how SGPR
spilling is implemented, this makes the issues appear
worse than it is.
llvm-svn: 347595
If a block had one of the _term instructions used for gluing
exec modifying instructions to the end of the block,
analyzeBranch would fail, preventing the verifier from catching
a broken successor list.
llvm-svn: 347027
This feature is only relevant to shaders, and is no longer used. When disabled,
lowering of reserved registers for shaders causes a compiler crash.
Remove the feature and add a test for compilation of shaders at OptNone.
Differential Revision: https://reviews.llvm.org/D53829
llvm-svn: 345763
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 344696
Emit a waterfall loop in the general case for a potentially-divergent Rsrc
operand. When practical, avoid this by using Addr64 instructions.
Recommits r341413 with changes to update the MachineDominatorTree when present.
Differential Revision: https://reviews.llvm.org/D51742
llvm-svn: 343992
Emit a waterfall loop in the general case for a potentially-divergent Rsrc
operand. When practical, avoid this by using Addr64 instructions.
Differential Revision: https://reviews.llvm.org/D50982
llvm-svn: 341413
Summary:
Add some optional code to validate getInstSizeInBytes for emitted
instructions. This flushed out some issues which are fixed by this
patch:
- Streamline getInstSizeInBytes
- Properly define the VI readlane/writelane instruction as VOP3
- Fix the inline constant determination. Specifically, this change
fixes an issue where a 32-bit value of 0xffffffff was recorded
as unsigned. This is equal to -1 when restricting to a 32-bit
comparison, and an inline constant can be used.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D50629
Change-Id: Id87c3b7975839da0de8156a124b0ce98c5fb47f2
llvm-svn: 340903
This needs to be done in the SSA fold operands
pass to be effective, so there is a bit of overlap
with SIShrinkInstructions but I don't think this
is practically avoidable.
llvm-svn: 340859