WG14 adopted N2626 at the meetings this week. This commit adds support
for using ' as a digit separator in a numeric literal which is
compatible with the C++ feature.
This patch extends the matrix spec to allow matrix-by-scalar division.
Originally support for `/` was left out to avoid ambiguity for the
matrix-matrix version of `/`, which could either be elementwise or
specified as matrix multiplication M1 * (1/M2).
For the matrix-scalar version, no ambiguity exists; `*` is also
an elementwise operation in that case. Matrix-by-scalar division
is commonly supported by systems including Matlab, Mathematica
or NumPy.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D97857
See https://bugs.llvm.org/show_bug.cgi?id=42154.
GCC's __attribute__((align)) can reduce the alignment of a type when applied to
a typedef. However, functions which take a pointer or reference to the
original type are compiled assuming the original alignment. Therefore when any
such function is passed an object of the new, less-aligned type, an alignment
fault can occur. In particular, this applies to the constructor, which is
defined for the original type and called for the less-aligned object.
This change adds a warning whenever an pointer or reference to an object is
passed to a function that was defined for a more-aligned type.
The calls to ASTContext::getTypeAlignInChars seem change the order in which
record layouts are evaluated, which caused changes to the output of
-fdump-record-layouts. As such some tests needed to be updated:
* Use CHECK-LABEL rather than counting the number of "Dumping AST Record
Layout" headers.
* Check for end of line in labels, so that struct B1 doesn't match struct B
etc.
* Add --strict-whitespace, since the whitespace shows meaningful structure.
* The order in which record layouts are printed has changed in some cases.
* clang-format for regions changed
Differential Revision: https://reviews.llvm.org/D97187
Our diagnostics relating to static assertions were a bit confused. For
instance, when in MS compatibility mode in C (where we accept
static_assert even without including <assert.h>), we would fail
to warn the user that they were using the wrong spelling (even in
pedantic mode), we were missing a compatibility warning about using
_Static_assert in earlier standards modes, diagnostics for the optional
message were not reflected in C as they were in C++, etc.
For ELF targets, GCC 11 will set SHF_GNU_RETAIN on the section of a
`__attribute__((retain))` function/variable to prevent linker garbage
collection. (See AttrDocs.td for the linker support).
This patch adds `retain` functions/variables to the `llvm.used` list, which has
the desired linker GC semantics. Note: `retain` does not imply `used`,
so an unused function/variable can be dropped by Sema.
Before 'retain' was introduced, previous ELF solutions require inline asm or
linker tricks, e.g. `asm volatile(".reloc 0, R_X86_64_NONE, target");`
(architecture dependent) or define a non-local symbol in the section and use
`ld -u`. There was no elegant source-level solution.
With D97448, `__attribute__((retain))` will set `SHF_GNU_RETAIN` on ELF targets.
Differential Revision: https://reviews.llvm.org/D97447
Currently TypePrinter lumps anonymous classes and unnamed classes in one group "anonymous" this is not correct and can be confusing in some contexts.
Differential Revision: https://reviews.llvm.org/D96807
When compiling UEFI applications, the main function is named
efi_main() instead of main(). Let's exclude efi_main() from
-Wmissing-prototypes as well to avoid warnings when working
on UEFI applications.
Differential Revision: https://reviews.llvm.org/D95746
mode.
We use that mode when evaluating ICEs in C, and those shortcuts could
result in ICE evaluation producing the wrong answer, specifically if we
evaluate a statement-expression as part of evaluating the ICE.
Currently TypePrinter lumps anonymous classes and unnamed classes in one group "anonymous" this is not correct and can be confusing in some contexts.
Differential Revision: https://reviews.llvm.org/D96807
Add the types for the RISC-V V extension builtins.
These types will be used by the RISC-V V intrinsics which require
types of the form <vscale x 1 x i64>(LMUL=1 element size=64) or
<vscale x 4 x i32>(LMUL=2 element size=32), etc. The vector_size
attribute does not work for us as it doesn't create a scalable
vector type. We want these types to be opaque and have no operators
defined for them. We want them to be sizeless. This makes them
similar to the ARM SVE builtin types. But we will have quite a bit
more types. This patch adds around 60. Later patches will add
another 230 or so types representing tuples of these types similar
to the x2/x3/x4 types in ARM SVE. But with extra complexity that
these types are combined with the LMUL concept that is unique to
RISCV.
For more background see this RFC
http://lists.llvm.org/pipermail/llvm-dev/2020-October/145850.html
Authored-by: Roger Ferrer Ibanez <roger.ferrer@bsc.es>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D92715
if E is merely instantiation-dependent."
This change leaves us unable to distinguish between different function
templates that differ in only instantiation-dependent ways, for example
template<typename T> decltype(int(T())) f();
template<typename T> decltype(int(T(0))) f();
We'll need substantially better support for types that are
instantiation-dependent but not dependent before we can go ahead with
this change.
This reverts commit e3065ce238.
if E is merely instantiation-dependent.
Previously reverted in 34e72a146111dd986889a0f0ec8767b2ca6b2913;
re-committed with a fix to an issue that caused name mangling to assert.
The `-Wpointer-sign` warning text is inappropriate for describing the
incompatible pointer conversion between plain `char` and explicitly
`signed`/`unsigned` `char` (whichever plain `char` has the same range
as) and vice versa.
Specifically, in part, it reads "converts between pointers to integer
types with different sign". This patch changes that portion to read
instead as "converts between pointers to integer types where one is of
the unique plain 'char' type and the other is not" when one of the types
is plain `char`.
C17 subclause 6.5.16.1 indicates that the conversions resulting in
`-Wpointer-sign` warnings in assignment-like contexts are constraint
violations. This means that strict conformance requires a diagnostic for
the case where the message text is wrong before this patch. The lack of
an even more specialized warning group is consistent with GCC.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D93999
Introduce a function attribute 'enforce_tcb' that prevents the function
from calling other functions without the same attribute. This allows
isolating code that's considered to be somehow privileged so that it could not
use its privileges to exhibit arbitrary behavior.
Introduce an on-by-default warning '-Wtcb-enforcement' that warns
about violations of the above rule.
Introduce a function attribute 'enforce_tcb_leaf' that suppresses
the new warning within the function it is attached to. Such leaf functions
may implement common functionality between the trusted and the untrusted code
but they require extra careful audit with respect to their capabilities.
Fixes after a revert in 419ef38a50293c58078f830517f5e305068dbee6:
Fix a test.
Add workaround for GCC bug (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67274).
Attribute the patch appropriately!
Differential Revision: https://reviews.llvm.org/D91898
Introduce a function attribute 'enforce_tcb' that prevents the function
from calling other functions without the same attribute. This allows
isolating code that's considered to be somehow privileged so that it could not
use its privileges to exhibit arbitrary behavior.
Introduce an on-by-default warning '-Wtcb-enforcement' that warns
about violations of the above rule.
Introduce a function attribute 'enforce_tcb_leaf' that suppresses
the new warning within the function it is attached to. Such leaf functions
may implement common functionality between the trusted and the untrusted code
but they require extra careful audit with respect to their capabilities.
Differential Revision: https://reviews.llvm.org/D91898
This patch renames PackStack and related variable names to also contain align across Clang.
As it is right now, Clang already uses one stack to record the information from both #pragma
align and #pragma pack. Leaving it as PackStack is confusing, and could cause people to
ignore #pragma align when developing code that interacts with PackStack.
Differential Revision: https://reviews.llvm.org/D93901
We supports SjLj exception handling in the backend, so changing
clang to allow lowering using SjLj exceptions. Update a regression
test also.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D94076
We currently reject this valid C construct by claiming it declares a
non-local variable: for (struct { int i; } s={0}; s.i != 0; s.i--) ;
We expected all declaration in the clause-1 declaration statement to be
a local VarDecl, but there can be other declarations involved such as a
tag declaration. This fixes PR35757.
On PPC, the vector pair instructions are independent from MMA.
This patch renames the vector pair LLVM intrinsics and Clang builtins to replace the _mma_ prefix by _vsx_ in their names.
We also move the vector pair type/intrinsic/builtin tests to their own files.
Differential Revision: https://reviews.llvm.org/D91974
If two variables are declared with __attribute__((section(name))) and
the implicit section types (e.g. read only vs writeable) conflict, an
error is raised. Extend this mechanism so that an error is raised if the
section type implied by a function's __attribute__((section)) conflicts
with that of another variable.
The `assume` attribute is a way to provide additional, arbitrary
information to the optimizer. For now, assumptions are restricted to
strings which will be accumulated for a function and emitted as comma
separated string function attribute. The key of the LLVM-IR function
attribute is `llvm.assume`. Similar to `llvm.assume` and
`__builtin_assume`, the `assume` attribute provides a user defined
assumption to the compiler.
A follow up patch will introduce an LLVM-core API to query the
assumptions attached to a function. We also expect to add more options,
e.g., expression arguments, to the `assume` attribute later on.
The `omp [begin] asssumes` pragma will leverage this attribute and
expose the functionality in the absence of OpenMP.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D91979
... and give more guidance to users.
If specifying -msve-vector-bits on a non-SVE target, clang would say:
error: '-msve-vector-bits' is not supported without SVE enabled
1. The driver lacks logic for "implied features".
This would result in this error being raised for -march=...+sve2,
even though +sve2 implies +sve.
2. Feature implication is well modelled in LLVM, so push the error down
the stack.
3. Hint to the user what flag they need to consider setting.
Now clang fails later, when the feature is used, saying:
aarch64-sve-vector-bits.c:42:41: error: 'arm_sve_vector_bits' attribute is not supported on targets missing 'sve'; specify an appropriate -march= or -mcpu=
typedef svint32_t noflag __attribute__((arm_sve_vector_bits(256)));
Move clang/test/Sema/{neon => arm}-vector-types-support.c and put tests for
this warning together in one place.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92487
552c6c2 removed support for promoting VLAs to constant arrays when the bounds
isn't an ICE, since this can result in miscompiling a conforming program that
assumes that the array is a VLA. Promoting VLAs for fields is still supported,
since clang doesn't support VLAs in fields, so no conforming program could have
a field VLA.
This change is really disruptive, so this commit carves out two more cases
where we promote VLAs which can't miscompile a conforming program:
- When the VLA appears in an ivar -- this seems like a corollary to the field thing
- When the VLA has an initializer -- VLAs can't have an initializer
Differential revision: https://reviews.llvm.org/D90871
Similar to Windows Itanium, PS4 is also an Itanium C++ ABI variant
which shares the goal of semantic compatibility with Microsoft C++
code that uses dllimport/export.
This change introduces a new function to determine from the triple
if an environment aims for compatibility with MS C++ code w.r.t to
these attributes and guards the relevant code paths using that
function.
Differential Revision: https://reviews.llvm.org/D90299
This patch adds tests for things that happened to be fixed by previous
patches, but that should continue working if we do decide to treat
sizeless types as incomplete types.
Differential Revision: https://reviews.llvm.org/D79584
Previously, lax conversions were only allowed between SVE vector-length
agnostic types and vector-length specific types. This meant that code
such as the following:
#include <arm_sve.h>
#define N __ARM_FEATURE_SVE_BITS
#define FIXED_ATTR __attribute__ ((vector_size (N/8)))
typedef float fixed_float32_t FIXED_ATTR;
void foo() {
fixed_float32_t fs32;
svfloat64_t s64;
fs32 = s64;
}
was not allowed.
This patch makes a minor change to areLaxCompatibleSveTypes to allow for
lax conversions to be performed between SVE vector-length agnostic types
and GNU vectors.
Differential Revision: https://reviews.llvm.org/D91696
The dependency mechanism for C has been implemented, and we have rolled out
this to all internal users, didn't see crashy issues, we consider it is stable
enough.
Differential Revision: https://reviews.llvm.org/D89046
This patch allows C-style casting between fixed-size and scalable
vectors. This kind of cast was previously blocked by the compiler, but
it should be allowed.
Differential Revision: https://reviews.llvm.org/D91262
Lax vector conversions was behaving incorrectly for implicit casts
between scalable and fixed-length vector types. For example, this:
#include <arm_sve.h>
#define N __ARM_FEATURE_SVE_BITS
#define FIXED_ATTR __attribute__((arm_sve_vector_bits(N)))
typedef svfloat32_t fixed_float32_t FIXED_ATTR;
void allowed_depending() {
fixed_float32_t fs32;
svfloat64_t s64;
fs32 = s64;
}
... would fail because the vectors have differing lane sizes. This patch
implements the correct behaviour for
-flax-vector-conversions={none,all,integer}. Specifically:
- -flax-vector-conversions=none prevents all lax vector conversions
between scalable and fixed-sized vectors.
- -flax-vector-conversions=integer allows lax vector conversions between
scalable and fixed-size vectors whose element types are integers.
- -flax-vector-conversions=all allows all lax vector conversions between
scalable and fixed-size vectors (including those with floating point
element types).
The implicit conversions are implemented as bitcasts.
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D91067
Adapt the declarations of `svpattern` and `svprfop` to the most recent
one defined in section "5. Enum declarations" of the SVE ACLE
specifications [1].
The signature of the intrinsics using these enums have been changed
accordingly.
A test has been added to make sure that `svpattern` and `svprfop` are
not typedefs.
[1] https://developer.arm.com/documentation/100987/latest, version
00bet6
Reviewed By: joechrisellis
Differential Revision: https://reviews.llvm.org/D91333
As Richard Smith pointed out in the review of D90123, both the C and C++
standard call it lvalue and rvalue, so let's stick to the same spelling
in Clang.
The use of the new types introduced for PowerPC MMA instructions needs to be restricted.
We add a PowerPC function checking that the given type is valid in a context in which we don't allow MMA types.
This function is called from various places in Sema where we want to prevent the use of these types.
Differential Revision: https://reviews.llvm.org/D82035
This patch adds tests and support for operations on SVE vectors created
by the 'arm_sve_vector_bits' attribute, described by the Arm C Language
Extensions (ACLE, version 00bet6, section 3.7.3.3) for SVE [1].
This covers the following:
* VLSTs support the same forms of element-wise initialization as GNU
vectors.
* VLSTs support the same built-in C and C++ operators as GNU vectors.
* Conditional and binary expressions containing GNU and SVE vectors
(fixed or sizeless) are invalid since the ambiguity around the result
type affects the ABI.
No functional changes were required to support vector initialization and
operators. The functional changes are to address unsupported conditional and
binary expressions.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D88233
Checks to make sure that stdlib's (std::)free is being appropriately
used. Presently checks for the following misuses:
- free(&stack_object)
- free(stack_array)
Differential Revision: https://reviews.llvm.org/D89988
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
for which it matters.
This is a step towards separating checking for a constant initializer
(in which std::is_constant_evaluated returns true) and any other
evaluation of a variable initializer (in which it returns false).
Old GCC used to aggressively fold VLAs to constant-bound arrays at block
scope in GNU mode. That's non-conforming, and more modern versions of
GCC only do this at file scope. Update Clang to do the same.
Also promote the warning for this from off-by-default to on-by-default
in all cases; more recent versions of GCC likewise warn on this by
default.
This is still slightly more permissive than GCC, as pointed out in
PR44406, as we still fold VLAs to constant arrays in structs, but that
seems justifiable given that we don't support VLA-in-struct (and don't
intend to ever support it), but GCC does.
Differential Revision: https://reviews.llvm.org/D89523
This addresses a regression where pretty much all C++ compilations using
-frounding-math now fail, due to rounding being performed in constexpr
function definitions in the standard library.
This follows the "manifestly constant evaluated" approach described in
https://reviews.llvm.org/D87528#2270676 -- evaluations that are required
to succeed at compile time are permitted even in regions with dynamic
rounding modes, as are (unfortunately) the evaluation of the
initializers of local variables of const integral types.
Differential Revision: https://reviews.llvm.org/D89360
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
callee in constant evaluation.
We previously made a deep copy of function parameters of class type when
passing them, resulting in the destructor for the parameter applying to
the original argument value, ignoring any modifications made in the
function body. This also meant that the 'this' pointer of the function
parameter could be observed changing between the caller and the callee.
This change completely reimplements how we model function parameters
during constant evaluation. We now model them roughly as if they were
variables living in the caller, albeit with an artificially reduced
scope that covers only the duration of the function call, instead of
modeling them as temporaries in the caller that we partially "reparent"
into the callee at the point of the call. This brings some minor
diagnostic improvements, as well as significantly reduced stack usage
during constant evaluation.
z/OS defaults to 16 bytes for __attribute__((aligned)), modify the test to differentiate between z/OS and Linux on s390x.
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D89127
The error-bit was missing, if a DeclRefExpr (which refers to a VarDecl
with a contains-errors initializer).
It could cause different violations in clang -- the DeclRefExpr is value-dependent,
but not contains-errors, `ABC<DeclRefExpr>` could produce a non-error
and non-dependent type in non-template context, which will lead to
crashes in constexpr evaluation.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D86048
We now recognize this function as a builtin despite it having an
unexpected number of parameters; make sure we don't enforce that it has
only 1 argument for its 2 parameters.
The current half vector was enforcing an assert expecting
"(LHS is half vector) == (RHS is half vector)"
for comma.
Reviewed By: ahatanak, fhahn
Differential Revision: https://reviews.llvm.org/D88265
This happens in glibc's headers. It's important that we recognize these
functions so that we can mark them as returns_twice.
Differential Revision: https://reviews.llvm.org/D88518
Check applied to unbounded (incomplete) arrays and pointers to spot
cases where the computed address is beyond the largest possible
addressable extent of the array, based on the address space in which the
array is delcared, or which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and array indexing
which could lead to linker failures or runtime exceptions. Of
particular interest when building for embedded systems with small
address spaces.
This is version 2 of this patch -- version 1 had some testing issues
due to a sign error in existing code. That error is corrected and
lit test for this chagne is extended to verify the fix.
Originally reviewed/accepted by: aaron.ballman
Original revision: https://reviews.llvm.org/D86796
Reviewed By: ebevhan
Differential Revision: https://reviews.llvm.org/D88174
Set the default wchar_t type on z/OS, and unsigned as the default.
Reviewed By: hubert.reinterpretcast, fanbo-meng
Differential Revision: https://reviews.llvm.org/D87624
Instead of relying on whether a certain identifier is a builtin, introduce BuiltinAttr to specify a declaration as having builtin semantics.
This fixes incompatible redeclarations of builtins, as reverting the identifier as being builtin due to one incompatible redeclaration would have broken rest of the builtin calls.
Mostly-compatible redeclarations of builtins also no longer have builtin semantics. They don't call the builtin nor inherit their attributes.
A long-standing FIXME regarding builtins inside a namespace enclosed in extern "C" not being recognized is also addressed.
Due to the more correct handling attributes for builtin functions are added in more places, resulting in more useful warnings.
Tests are updated to reflect that.
Intrinsics without an inline definition in intrin.h had `inline` and `static` removed as they had no effect and caused them to no longer be recognized as builtins otherwise.
A pthread_create() related test is XFAIL-ed, as it relied on it being recognized as a builtin based on its name.
The builtin declaration syntax is too restrictive and doesn't allow custom structs, function pointers, etc.
It seems to be the only case and fixing this would require reworking the current builtin syntax, so this seems acceptable.
Fixes PR45410.
Reviewed By: rsmith, yutsumi
Differential Revision: https://reviews.llvm.org/D77491
This patch adds support for implicit casting between GNU vectors and SVE
vectors when `__ARM_FEATURE_SVE_BITS==N`, as defined by the Arm C
Language Extensions (ACLE, version 00bet5, section 3.7.3.3) for SVE [1].
This behavior makes it possible to use GNU vectors with ACLE functions
that operate on VLAT. For example:
typedef int8_t vec __attribute__((vector_size(32)));
vec f(vec x) { return svasrd_x(svptrue_b8(), x, 1); }
Tests are also added for implicit casting between GNU and fixed-length
SVE vectors created by the 'arm_sve_vector_bits' attribute. This
behavior makes it possible to use VLST with existing interfaces that
operate on GNUT. For example:
typedef int8_t vec1 __attribute__((vector_size(32)));
void f(vec1);
#if __ARM_FEATURE_SVE_BITS==256 && __ARM_FEATURE_SVE_VECTOR_OPERATORS
typedef svint8_t vec2 __attribute__((arm_sve_vector_bits(256)));
void g(vec2 x) { f(x); } // OK
#endif
The `__ARM_FEATURE_SVE_VECTOR_OPERATORS` feature macro indicates
interoperability with the GNU vector extension. This is the first patch
providing support for this feature, which once complete will be enabled
by the `-msve-vector-bits` flag, as the `__ARM_FEATURE_SVE_BITS` feature
currently is.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87607
Check applied to unbounded (incomplete) arrays and pointers
to spot cases where the computed address is beyond the
largest possible addressable extent of the array, based
on the address space in which the array is delcared, or
which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and
array indexing which could lead to linker failures or
runtime exceptions. Of particular interest when building
for embedded systems with small address spaces.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D86796
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
The __ARM_FEATURE_SVE_BITS feature macro is specified in the Arm C
Language Extensions (ACLE) for SVE [1] (version 00bet5). From the spec,
where __ARM_FEATURE_SVE_BITS==N:
When N is nonzero, indicates that the implementation is generating
code for an N-bit SVE target and that the arm_sve_vector_bits(N)
attribute is available.
This was defined in D83550 as __ARM_FEATURE_SVE_BITS_EXPERIMENTAL and
enabled under the -msve-vector-bits flag to simplify initial tests.
This patch drops _EXPERIMENTAL now there is support for the feature.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D86720
Continue to heuristically pick the wider of the two operands for
narrowing conversion warnings so that some_char + 1 isn't treated as
being wider than a char, but use the more accurate computation for
tautological comparison warnings.
Differential Revision: https://reviews.llvm.org/D85778
This patch implements the semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
The semantics were already implemented by D83551, although the
implementation approach has since changed to represent VLSTs as
VectorType in the AST and fixed-length vectors in the IR everywhere
except in function args/returns. This is described in the prototype
patch D85128 demonstrating the new approach.
The semantic changes added in D83551 are changed since the
AttributedType is replaced by VectorType in the AST. Minimal changes
were necessary in the previous patch as the canonical type for both VLA
and VLS was the same (i.e. sizeless), except in constructs such as
globals and structs where sizeless types are unsupported. This patch
reverts the changes that permitted VLS types that were represented as
sizeless types in such circumstances, and adds support for implicit
casting between VLA <-> VLS types as described in section 3.7.3.2 of the
ACLE.
Since the SVE builtin types for bool and uint8 are both represented as
BuiltinType::UChar in VLSTs, two new vector kinds are implemented to
distinguish predicate and data vectors.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85736
This enables us to use the __builtin_rotateleft / __builtin_rotateright 8/16/32/64 intrinsics inside constexpr code.
Differential Revision: https://reviews.llvm.org/D86342
This adds parsing and codegen support for tune in target attribute.
I've implemented this so that arch in the target attribute implicitly disables tune from the command line. I'm not sure what gcc does here. But since -march implies -mtune. I assume 'arch' in the target attribute implies tune in the target attribute.
Differential Revision: https://reviews.llvm.org/D86187
[Clang] Fix BZ47169, loader_uninitialized on incomplete types
Reported by @erichkeane. Fix proposed by @erichkeane works, tests included.
Bug introduced in D74361. Crash was on querying a CXXRecordDecl for
hasTrivialDefaultConstructor on an incomplete type. Fixed by calling
RequireCompleteType in the right place.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D85990
We're (temporarily) disabling ExtInt for the '__atomic' builtins so we can better design their behavior later. The idea is until we do an audit/design for the way atomic builtins are supposed to work with _ExtInt, we should leave them restricted so they don't limit our future options, such as by binding us to a sub-optimal implementation via ABI.
Example after this change:
$ cat test.c
void f(_ExtInt(64) *ptr) {
__atomic_fetch_add(ptr, 1, 0);
}
$ clang -c test.c
test.c:2:22: error: argument to atomic builtin of type '_ExtInt' is not supported
__atomic_fetch_add(ptr, 1, 0);
^
1 error generated.
Differential Revision: https://reviews.llvm.org/D84049
ns_error_domain can be used by, e.g. NS_ERROR_ENUM, in order to
identify a global declaration representing the domain constant.
Introduces the attribute, Sema handling, diagnostics, and test case.
This is cherry-picked from a14779f504
and adapted to updated Clang APIs.
Reviewed By: gribozavr2, aaron.ballman
Differential Revision: https://reviews.llvm.org/D84005
- Prevent nullptr-deference at try to emit warning for invalid `expr`
- Simplify `InitListChecker::UpdateStructuredListElement()` usages. We do not need to check `expr` and increment `StructuredIndex` (for invalid `expr`) before the call anymore.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85193
This change squelches the warning for a cast from fixed to fixed point
conversions when -Wbad-function-cast is enabled.
Fixes:
cast from function call of type '_Fract' to non-matching type '_Fract'
[-Wbad-function-cast]
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D85157
Vectors of bfloat are a storage format only; you're supposed to
explicitly convert them to a wider type to do arithmetic on them.
But currently, if you write something like
bfloat16x4_t test(bfloat16x4_t a, bfloat16x4_t b) { return a + b; }
then the clang frontend accepts it without error, and (ARM or AArch64)
isel fails to generate code for it.
Added a rule in Sema that forbids the attempt from even being made,
and tests that check it. In particular, we also outlaw arithmetic
between vectors of bfloat and any other vector type.
Patch by Luke Cheeseman.
Reviewed By: LukeGeeson
Differential Revision: https://reviews.llvm.org/D85009
This warning diagnoses cases where an expression is compared to a
constant, and the comparison is tautological due to the form of the
expression (but not merely due to its type). This applies in cases such
as comparisons of bit-fields and the result of bit-masks.
The new warning is added to the Clang diagnostic group
-Wtautological-constant-in-range-compare but not to the
formerly-equivalent GCC-compatibility diagnostic group -Wtype-limits,
which retains its old meaning of diagnosing only tautological
comparisons to extremal values of a type (eg, int > INT_MAX).
Reviewed By: rtrieu
Differential Revision: https://reviews.llvm.org/D85256
This patch added the following additional compile-once
run-everywhere (CO-RE) relocations:
- existence/size of typedef, struct/union or enum type
- enum value and enum value existence
These additional relocations will make CO-RE bpf programs more
adaptive for potential kernel internal data structure changes.
For existence/size relocations, the following two code patterns
are supported:
1. uint32_t __builtin_preserve_type_info(*(<type> *)0, flag);
2. <type> var;
uint32_t __builtin_preserve_field_info(var, flag);
flag = 0 for existence relocation and flag = 1 for size relocation.
For enum value existence and enum value relocations, the following code
pattern is supported:
uint64_t __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
flag);
flag = 0 means existence relocation and flag = 1 for enum value.
relocation. In the above <enum_type> can be an enum type or
a typedef to enum type. The <enum_value> needs to be an enumerator
value from the same enum type. The return type is uint64_t to
permit potential 64bit enumerator values.
Differential Revision: https://reviews.llvm.org/D83242
Since we permit using SOME attributes (at the moment, just 1) with
multiversioning, we should improve the message as it still implies that
no attributes should be combined with multiversioning.
Summary:
This patch implements semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define fixed-length (VLST) versions
of existing sizeless types (VLAT).
Implemented in this patch is the the behaviour described in section 3.7.3.2
and minimal parts of sections 3.7.3.3 and 3.7.3.4, this includes:
* Defining VLST globals, structs, unions, and local variables
* Implicit casting between VLAT <=> VLST.
* Diagnosis of ill-formed conditional expressions of the form:
C ? E1 : E2
where E1 is a VLAT type and E2 is a VLST, or vice-versa. This
avoids any ambiguity about the nature of the result type (i.e is
it sized or sizeless).
* For vectors:
* sizeof(VLST) == N/8
* alignof(VLST) == 16
* For predicates:
* sizeof(VLST) == N/64
* alignof(VLST) == 2
VLSTs have the same representation as VLATs in the AST but are wrapped
with a TypeAttribute. Scalable types are currently emitted in the IR for
uses such as globals and structs which don't support these types, this
is addressed in the next patch with codegen, where VLSTs are lowered to
sized arrays for globals, structs / unions and arrays.
Not implemented in this patch is the behaviour guarded by the feature
macros:
* __ARM_FEATURE_SVE_VECTOR_OPERATORS
* __ARM_FEATURE_SVE_PREDICATE_OPERATORS
As such, the GNU __attribute__((vector_size)) extension is not available
and operators such as binary '+' are not supported for VLSTs. Support
for this is intended to be addressed by later patches.
[1] https://developer.arm.com/documentation/100987/latest
This is patch 2/4 of a patch series.
Reviewers: sdesmalen, rsandifo-arm, efriedma, cameron.mcinally, ctetreau, rengolin, aaron.ballman
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D83551
Summary:
We need to detect when certain TypoExprs are not being transformed
due to invalid trees, otherwise we risk endlessly trying to fix it.
Reviewers: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D84067
As reported in PR46774, an invalid arithemetic conversion used in a C
ternary operator resulted in an assertion. This patch replaces that
assertion with a diagnostic stating that the conversion failed.
At the moment, I believe the only case of this happening is _ExtInt
types.
Summary:
This patch implements parsing support for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE, version 00bet5,
section 3.7.3) for SVE [1].
The purpose of this attribute is to define fixed-length (VLST) versions
of existing sizeless types (VLAT). For example:
#if __ARM_FEATURE_SVE_BITS==512
typedef svint32_t fixed_svint32_t __attribute__((arm_sve_vector_bits(512)));
#endif
Creates a type 'fixed_svint32_t' that is a fixed-length version of
'svint32_t' that is normal-sized (rather than sizeless) and contains
exactly 512 bits. Unlike 'svint32_t', this type can be used in places
such as structs and arrays where sizeless types can't.
Implemented in this patch is the following:
* Defined and tested attribute taking single argument.
* Checks the argument is an integer constant expression.
* Attribute can only be attached to a single SVE vector or predicate
type, excluding tuple types such as svint32x4_t.
* Added the `-msve-vector-bits=<bits>` flag. When specified the
`__ARM_FEATURE_SVE_BITS__EXPERIMENTAL` macro is defined.
* Added a language option to store the vector size specified by the
`-msve-vector-bits=<bits>` flag. This is used to validate `N ==
__ARM_FEATURE_SVE_BITS`, where N is the number of bits passed to the
attribute and `__ARM_FEATURE_SVE_BITS` is the feature macro defined under
the same flag.
The `__ARM_FEATURE_SVE_BITS` macro will be made non-experimental in the final
patch of the series.
[1] https://developer.arm.com/documentation/100987/latest
This is patch 1/4 of a patch series.
Reviewers: sdesmalen, rsandifo-arm, efriedma, ctetreau, cameron.mcinally, rengolin, aaron.ballman
Reviewed By: sdesmalen, aaron.ballman
Differential Revision: https://reviews.llvm.org/D83550
The _ExtInt type allows custom width integers, but the atomic memory
access's operand must have a power-of-two size. _ExtInts with
non-power-of-two size should not be allowed for atomic intrinsic.
Before this change:
$ cat test.c
typedef unsigned _ExtInt(42) dtype;
void verify_binary_op_nand(dtype* pval1, dtype val2)
{ __sync_nand_and_fetch(pval1, val2); }
$ clang test.c
clang-11:
/home/ubuntu/llvm_workspace/llvm/clang/lib/CodeGen/CGBuiltin.cpp:117:
llvm::Value*
EmitToInt(clang::CodeGen::CodeGenFunction&, llvm::Value*,
clang::QualType, llvm::IntegerType*): Assertion `V->getType() ==
IntType' failed.
PLEASE submit a bug report to https://bugs.llvm.org/ and include the
crash backtrace, preprocessed source, and associated run script.
After this change:
$ clang test.c
test.c:3:30: error: Atomic memory operand must have a power-of-two size
{ __sync_nand_and_fetch(pval1, val2); }
^
List of the atomic intrinsics that have this
problem:
__sync_fetch_and_add
__sync_fetch_and_sub
__sync_fetch_and_or
__sync_fetch_and_and
__sync_fetch_and_xor
__sync_fetch_and_nand
__sync_nand_and_fetch
__sync_and_and_fetch
__sync_add_and_fetch
__sync_sub_and_fetch
__sync_or_and_fetch
__sync_xor_and_fetch
__sync_fetch_and_min
__sync_fetch_and_max
__sync_fetch_and_umin
__sync_fetch_and_umax
__sync_val_compare_and_swap
__sync_bool_compare_and_swap
Differential Revision: https://reviews.llvm.org/D83340
Currently, Clang previously diagnosed this code by default:
void f(int a[static 0]);
saying that "static has no effect on zero-length arrays", which was
accurate.
However, static array extents require that the caller of the function
pass a nonnull pointer to an array of *at least* that number of
elements, but it can pass more (see C17 6.7.6.3p6). Given that we allow
zero-sized arrays as a GNU extension and that it's valid to pass more
elements than specified by the static array extent, we now support
zero-sized static array extents with the usual semantics because it can
be useful in cases like:
void my_bzero(char p[static 0], int n);
my_bzero(&c+1, 0); //ok
my_bzero(t+k,n-k); //ok, pattern from actual code
in places such as constant folding
Previously some places that should have handled
__builtin_expect_with_probability is missing, so in some case it acts
differently than __builtin_expect.
For example it was not handled in constant folding, thus in the
following program, the "if" condition should be constantly true and
folded, but previously it was not handled and cause warning "control may
reach end of non-void function" (while __builtin_expect does not):
__attribute__((noreturn)) extern void bar();
int foo(int x, int y) {
if (y) {
if (__builtin_expect_with_probability(1, 1, 1))
bar();
}
else
return 0;
}
Now it's fixed.
Differential Revisions: https://reviews.llvm.org/D83362
__builtin_va_*() and __builtin_ms_va_*() are declared as functions with a
parameter of reference type.
This patch fixes a crash when using these functions in C where an argument
of structure type is incompatible with the parameter type.
Differential Revision: https://reviews.llvm.org/D82805
Reviewed By: riccibruno
Patch by: Aleksandr Platonov <platonov.aleksandr@huawei.com>
The error-bit was missing, and the unexpandedpack bit seemed to be
set incorrectly.
Reviewed By: sammccall, erichkeane
Differential Revision: https://reviews.llvm.org/D83114
Summary:
We might lose the error-bit if the error-bit goes through the code path
"error type/expr" -> "error template argument" -> "nested name specifier" ->
... -> "template Specialization type"
Template name also needs this, as a template can be nested into
an error specifier, e.g. templateName apply in
`TC<decltype(<recovery-expr>(Foo, int()))>::template apply`
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82526
Summary:
Patch adds tests for mangling of svbfloat16_t and several other type
related tests.
Reviewers: sdesmalen, kmclaughlin, fpetrogalli, efriedma
Reviewed By: sdesmalen, fpetrogalli
Differential Revision: https://reviews.llvm.org/D82668
This was suggested in D72782 and brings the diagnostics more in line
with how argument references are handled elsewhere.
Reviewers: rjmccall, jfb, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D82473
Add a new builtin-function __builtin_expect_with_probability and
intrinsic llvm.expect.with.probability.
The interface is __builtin_expect_with_probability(long expr, long
expected, double probability).
It is mainly the same as __builtin_expect besides one more argument
indicating the probability of expression equal to expected value. The
probability should be a constant floating-point expression and be in
range [0.0, 1.0] inclusive.
It is similar to builtin-expect-with-probability function in GCC
built-in functions.
Differential Revision: https://reviews.llvm.org/D79830
Clang is missing one of the conditions for C99 6.5.9p2, where comparison
between pointers must either both point to incomplete types or both
point to complete types. This patch adds an extra check to the clause
where two pointers are of compatible types.
This only applies to C89/C99; the relevant part of the standard was
rewritten for C11.
Differential Revision: https://reviews.llvm.org/D79945
This patch add __builtin_matrix_column_major_store to Clang,
as described in clang/docs/MatrixTypes.rst. In the initial version,
the stride is not optional yet.
Reviewers: rjmccall, jfb, rsmith, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72782
This patch add __builtin_matrix_column_major_load to Clang,
as described in clang/docs/MatrixTypes.rst. In the initial version,
the stride is not optional yet.
Reviewers: rjmccall, rsmith, jfb, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72781
Summary:
The field decl (in the testcase) was still valid, which results in a
valid RecordDecl, it led to crash when performing struct layout,
and computing struct size etc.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81913
_ExtInt types
- Fix computed size for _ExtInt types passed to checked arithmetic
builtins.
- Emit diagnostic when signed _ExtInt larger than 128-bits is passed
to __builtin_mul_overflow.
- Change Sema checks for builtins to accept placeholder types.
Differential Revision: https://reviews.llvm.org/D81420
The ParseStructUnionBody function was separately keeping track of the
field decls for historical reasons, however the "ActOn" functions add
the field to the RecordDecl anyway.
The "ParseStructDeclaration" function, which handles parsing fields
didn't have a way of handling what happens on an anonymous field, and
changing it would alter a large amount of objc code, so I chose instead
to implement this by just filling the FieldDecls vector with the actual
FieldDecls that were successfully added to the recorddecl .
Summary:
__builtin_amdgcn_atomic_inc32(int *Ptr, int Val, unsigned MemoryOrdering, const char *SyncScope)
__builtin_amdgcn_atomic_inc64(int64_t *Ptr, int64_t Val, unsigned MemoryOrdering, const char *SyncScope)
__builtin_amdgcn_atomic_dec32(int *Ptr, int Val, unsigned MemoryOrdering, const char *SyncScope)
__builtin_amdgcn_atomic_dec64(int64_t *Ptr, int64_t Val, unsigned MemoryOrdering, const char *SyncScope)
First and second arguments gets transparently passed to the amdgcn atomic
inc/dec intrinsic. Fifth argument of the intrinsic is set as true if the
first argument of the builtin is a volatile pointer. The third argument of
this builtin is one of the memory-ordering specifiers ATOMIC_ACQUIRE,
ATOMIC_RELEASE, ATOMIC_ACQ_REL, or ATOMIC_SEQ_CST following C++11 memory
model semantics. This is mapped to corresponding LLVM atomic memory ordering
for the atomic inc/dec instruction using CLANG atomic C ABI. The fourth
argument is an AMDGPU-specific synchronization scope defined as string.
Reviewers: arsenm, sameerds, JonChesterfield, jdoerfert
Reviewed By: arsenm, sameerds
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, jfb, kerbowa, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80804
This patch add __builtin_matrix_transpose to Clang, as described in
clang/docs/MatrixTypes.rst.
Reviewers: rjmccall, jfb, rsmith, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72778
Summary:
When getting a warning that we release a capability that isn't held it's
sometimes not clear why. So just like we do for double locking, we add a
note on the previous release operation, which marks the point since when
the capability isn't held any longer.
We can find this previous release operation by looking up the
corresponding negative capability.
Reviewers: aaron.ballman, delesley
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D81352
This patch implements the * binary operator for values of
MatrixType. It adds support for matrix * matrix, scalar * matrix and
matrix * scalar.
For the matrix, matrix case, the number of columns of the first operand
must match the number of rows of the second. For the scalar,matrix variants,
the element type of the matrix must match the scalar type.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76794
This patch addresses the review comments on r352930:
- Removes redundant diagnostic checking code
- Removes errnoneous use of diag::err_alias_is_definition, which
turned out to be ineffective anyway since functions can be defined later
in the translation unit and avoid detection.
- Adds a test for various invalid cases for import_name and import_module.
This reapplies D59520, with the addition of adding
`InGroup<IgnoredAttributes>` to the new warnings, to fix the
Misc/warning-flags.c failure.
Differential Revision: https://reviews.llvm.org/D59520
This patch addresses the review comments on r352930:
- Removes redundant diagnostic checking code
- Removes errnoneous use of diag::err_alias_is_definition, which
turned out to be ineffective anyway since functions can be defined later
in the translation unit and avoid detection.
- Adds a test for various invalid cases for import_name and import_module.
Differential Revision: https://reviews.llvm.org/D59520
Summary:
This patch upstreams support for a new storage only bfloat16 C type.
This type is used to implement primitive support for bfloat16 data, in
line with the Bfloat16 extension of the Armv8.6-a architecture, as
detailed here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
The bfloat type, and its properties are specified in the Arm Architecture
Reference Manual:
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
In detail this patch:
- introduces an opaque, storage-only C-type __bf16, which introduces a new bfloat IR type.
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
The following people contributed to this patch:
- Luke Cheeseman
- Momchil Velikov
- Alexandros Lamprineas
- Luke Geeson
- Simon Tatham
- Ties Stuij
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, fpetrogalli
Reviewed By: SjoerdMeijer
Subscribers: labrinea, majnemer, asmith, dexonsmith, kristof.beyls, arphaman, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76077
Extension vectors now can be used in element-wise conditional selector.
For example:
```
R[i] = C[i]? A[i] : B[i]
```
This feature was previously only enabled in OpenCL C. Now it's also
available in C. Not that it has different behaviors than GNU vectors
(i.e. __vector_size__). Extension vectors selects on signdness of the
vector. GNU vectors on the other hand do normal bool conversions. Also,
this feature is not available in C++.
Differential Revision: https://reviews.llvm.org/D80574
This patch implements matrix index expressions
(matrix[RowIdx][ColumnIdx]).
It does so by introducing a new MatrixSubscriptExpr(Base, RowIdx, ColumnIdx).
MatrixSubscriptExprs are built in 2 steps in ActOnMatrixSubscriptExpr. First,
if the base of a subscript is of matrix type, we create a incomplete
MatrixSubscriptExpr(base, idx, nullptr). Second, if the base is an incomplete
MatrixSubscriptExpr, we create a complete
MatrixSubscriptExpr(base->getBase(), base->getRowIdx(), idx)
Similar to vector elements, it is not possible to take the address of
a MatrixSubscriptExpr.
For CodeGen, a new MatrixElt type is added to LValue, which is very
similar to VectorElt. The only difference is that we may need to cast
the type of the base from an array to a vector type when accessing it.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76791
GCC 10.1 introduced support for the [[]] style spelling of attributes in C
mode. Similar to how GCC supports __attribute__((foo)) as [[gnu::foo]] in
C++ mode, it now supports the same spelling in C mode as well. This patch
makes a change in Clang so that when you use the GCC attribute spelling,
the attribute is automatically available in all three spellings by default.
However, like Clang, GCC has some attributes it only recognizes in C++ mode
(specifically, abi_tag and init_priority), which this patch also honors.
This patch implements the + and - binary operators for values of
MatrixType. It adds support for matrix +/- matrix, scalar +/- matrix and
matrix +/- scalar.
For the matrix, matrix case, the types must initially be structurally
equivalent. For the scalar,matrix variants, the element type of the
matrix must match the scalar type.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76793
Summary:
With recovery-ast, we will get an undeduced `auto` return type for
"auto foo()->undef()" function declaration, the function decl still keeps
valid, it is dangerous, and breaks assumptions in clang, and leads crashes.
This patch invalidates these functions, if we deduce autos from the
return rexpression, which is similar to auto VarDecl.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80221
The headers provided with recent GNU toolchains for PPC have code that includes
typedefs such as:
typedef _Complex float __cfloat128 __attribute__ ((__mode__ (__KC__)))
This patch allows clang to compile programs that contain
#include <math.h>
with -mfloat128 which it currently fails to compile.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=46068
Differential revision: https://reviews.llvm.org/D80374
Summary: 'A' constraint requires an immediate int or fp constant that can be inlined in an instruction encoding.
This is the second part of the change. The llvm part has been committed as b087b91c91.
See https://reviews.llvm.org/D78494
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D79493
When I fixed the targets specific builtins to make sure that aux-targets
are checked, it seems I didn't consider cases where the builtins check
the target info for further info. This patch bubbles the target-info
down to the individual checker functions to ensure that they validate
against the aux-target as well.
For non-aux-target invocations, this is an NFC.
Such a builtin function is mostly useful to preserve btf type id
for non-global data. For example,
extern void foo(..., void *data, int size);
int test(...) {
struct t { int a; int b; int c; } d;
d.a = ...; d.b = ...; d.c = ...;
foo(..., &d, sizeof(d));
}
The function "foo" in the above only see raw data and does not
know what type of the data is. In certain cases, e.g., logging,
the additional type information will help pretty print.
This patch implemented a BPF specific builtin
u32 btf_type_id = __builtin_btf_type_id(param, flag)
which will return a btf type id for the "param".
flag == 0 will indicate a BTF local relocation,
which means btf type_id only adjusted when bpf program BTF changes.
flag == 1 will indicate a BTF remote relocation,
which means btf type_id is adjusted against linux kernel or
future other entities.
Differential Revision: https://reviews.llvm.org/D74668
I discovered that when using an aux-target builtin, it was recognized as
a builtin but never checked. This patch checks for an aux-target builtin
and instead validates it against the correct target.
It does this by extracting the checking code for Target-specific
builtins into its own function, then calls with either targetInfo or
AuxTargetInfo.
Summary:
Conflicting types for the same section name defined in clang section
pragmas and GNU-style section attributes were not properly captured by
Clang's Sema. The lack of diagnostics was caused by the fact the section
specification coming from attributes was handled by Sema as implicit,
even though explicitly defined by the user.
This patch enables the diagnostics for section type conflicts between
those specifications by making sure sections defined in section
attributes are correctly handled as explicit.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78573
Summary:
Section names used in clang section pragmas were not validated against
previously defined sections, causing section type conflicts to be
ignored by Sema.
This patch enables Clang to capture these section type conflicts by
using the existing Sema's UnifySection method to validate section names
from clang section pragmas.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78572
This is the result of an audit of all of the ABIs in clang to implement
and enable the type for those targets.
Additionally, this finds an issue with integer-promotion passing for a
few platforms when using _ExtInt of < int, so this also corrects that
resulting in signext/zeroext being on a params of those types in some
platforms.
Differential Revisions: https://reviews.llvm.org/D79118
The built-in SVE types are supposed to be treated as opaque types.
This means that for initialisation purposes they should be treated
as a single unit, much like a scalar type.
However, as Eli pointed out, actually using "scalar" in the diagnostics
is likely to cause confusion, given the types are logically vectors.
The patch therefore uses custom diagnostics or generalises existing
ones. Some of the messages use the word "indivisible" to try to make
it clear(er) that these types can't be initialised elementwise.
I don't think it's possible to trigger warn_braces_around_(scalar_)init
for sizeless types as things stand, since the types can't be used as
members or elements of more complex types. But it seemed better to be
consistent with ext_many_braces_around_(scalar_)init, so the patch
changes it anyway.
Differential Revision: https://reviews.llvm.org/D76689
I have a follow-on patch that uses an alternative wording for
ext_excess_initializers in some cases. This patch puts it and
a couple of related warnings under their own -W option in order
to avoid a regression in Misc/warning-flags.c.
Differential Revision: https://reviews.llvm.org/D79244
Since the _ExtInt type got into the repo, we've discovered that the ABI
implications weren't completely understood. The other architectures are
going to be audited (see D79118), however downstream targets aren't
going to benefit from this audit.
This patch disables the _ExtInt type by default and makes the
target-info an opt-in. As it is audited, I'll re-enable these for all
of our default targets.
When passing a value of a struct/union type from secure to non-secure
state (that is returning from a CMSE entry function or passing an
argument to CMSE-non-secure call), there is a potential sensitive
information leak via the padding bits in the structure. It is not
possible in the general case to ensure those bits are cleared by using
Standard C/C++.
This patch makes the compiler emit code to clear such padding
bits. Since type information is lost in LLVM IR, the code generation
is done by Clang.
For each interesting record type, we build a bitmask, in which all the
bits, corresponding to user declared members, are set. Values of
record types are returned by coercing them to an integer. After the
coercion, the coerced value is masked (with bitwise AND) and then
returned by the function. In a similar manner, values of record types
are passed as arguments by coercing them to an array of integers, and
the coerced values themselves are masked.
For union types, we effectively clear only bits, which aren't part of
any member, since we don't know which is the currently active one.
The compiler will issue a warning, whenever a union is passed to
non-secure state.
Values of half-precision floating-point types are passed in the least
significant bits of a 32-bit register (GPR or FPR) with the most
significant bits unspecified. Since this is also a potential leak of
sensitive information, this patch also clears those unspecified bits.
Differential Revision: https://reviews.llvm.org/D76369
Expose llvm fence instruction as clang builtin for AMDGPU target
__builtin_amdgcn_fence(unsigned int memoryOrdering, const char *syncScope)
The first argument of this builtin is one of the memory-ordering specifiers
__ATOMIC_ACQUIRE, __ATOMIC_RELEASE, __ATOMIC_ACQ_REL, or __ATOMIC_SEQ_CST
following C++11 memory model semantics. This is mapped to corresponding
LLVM atomic memory ordering for the fence instruction using LLVM atomic C
ABI. The second argument is an AMDGPU-specific synchronization scope
defined as string.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D75917
Currently, both `warn_impcast_integer_float_precision_constant` and
`warn_impcast_integer_float_precision` are covered by
-Wimplicit-int-float-conversion, but only the ..._constant warning is on
by default.
`warn_impcast_integer_float_precision_constant` likely flags real problems
while `warn_impcast_integer_float_precision` may flag legitimate use
cases (for example, `int` used with limited range supported by `float`).
If -Wno-implicit-int-float-conversion is used, currently there is no way
to restore the ..._constant warning. This patch adds
-Wimplicit-const-int-float-conversion to address the issue. (Similar to
the reasoning in https://reviews.llvm.org/D64666#1598194)
Adapted from a patch by Brooks Moses.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D78661
WG14 has adopted N2480 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2480.pdf)
into C2x at the meetings last week, allowing parameter names of a function
definition to be elided. This patch relaxes the error so that C++ and C2x do not
diagnose this situation, and modes before C2x will allow it as an extension.
This also adds the same feature to ObjC blocks under the assumption that ObjC
wishes to follow the C standard in this regard.
Summary:
This matches llvm::VectorType.
It moves the size from the type bitfield into VectorType, increasing size by 8
bytes (including padding of 4). This is OK as we don't expect to create terribly
many of these types.
c.f. D77313 which enables large power-of-two sizes without growing VectorType.
Reviewers: efriedma, hokein
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77335
The driver enables -fdiagnostics-show-option by default, so flip the CC1
default to reduce the lengths of common CC1 command lines.
This change also makes ParseDiagnosticArgs() consistently enable
-fdiagnostics-show-option by default.
Summary: We mark these decls as invalid.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77037
Summary:
If the bitwith expr contains errors, we mark the field decl invalid.
This patch also tweaks the behavior of ObjCInterfaceDecl to be consistent with
existing RecordDecl -- getObjCLayout method is only called with valid decls.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76953
Casts from an SVE type to itself aren't very useful, but they are
supposed to be valid, and could occur in things like macro expansions.
Such casts already work for C++ and are tested by sizeless-1.cpp.
This patch makes them work for C too.
Differential Revision: https://reviews.llvm.org/D76694
When compiling C, a ?: between two values of the same SVE type
currently gives an error such as:
incompatible operand types ('svint8_t' (aka '__SVInt8_t') and 'svint8_t')
It's supposed to be valid to select between (cv-qualified versions of)
the same SVE type, so this patch adds that case.
These expressions already work for C++ and are tested by
SemaCXX/sizeless-1.cpp.
Differential Revision: https://reviews.llvm.org/D76693
There's inconsistency in handling array types between the
`distributeFunctionTypeAttrXXX` functions and the
`FunctionTypeUnwrapper` in `SemaType.cpp`.
This patch lets `FunctionTypeUnwrapper` apply function type attributes
through array types.
Differential Revision: https://reviews.llvm.org/D75109
Summary: If the size parameter of `__builtin_memcpy_inline` comes from an un-instantiated template parameter current code would crash.
Reviewers: efriedma, courbet
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76504
Summary:
This patch implements the following intrinsics:
uint8x16_t __arm_vcx1q_u8 (int coproc, uint32_t imm);
T __arm_vcx1qa(int coproc, T acc, uint32_t imm);
T __arm_vcx2q(int coproc, T n, uint32_t imm);
uint8x16_t __arm_vcx2q_u8(int coproc, T n, uint32_t imm);
T __arm_vcx2qa(int coproc, T acc, U n, uint32_t imm);
T __arm_vcx3q(int coproc, T n, U m, uint32_t imm);
uint8x16_t __arm_vcx3q_u8(int coproc, T n, U m, uint32_t imm);
T __arm_vcx3qa(int coproc, T acc, U n, V m, uint32_t imm);
Most of them are polymorphic. Furthermore, some intrinsics are
polymorphic by 2 or 3 parameter types, such polymorphism is not
supported by the existing MVE/CDE tablegen backends, also we don't
really want to have a combinatorial explosion caused by 1000 different
combinations of 3 vector types. Because of this some intrinsics are
implemented as macros involving a cast of the polymorphic arguments to
uint8x16_t.
The IR intrinsics are even more restricted in terms of types: all MVE
vectors are cast to v16i8.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76299
Summary:
This change implements ACLE CDE intrinsics that translate to
instructions working with general-purpose registers.
The specification is available at
https://static.docs.arm.com/101028/0010/ACLE_2019Q4_release-0010.pdf
Each ACLE intrinsic gets a corresponding LLVM IR intrinsic (because
they have distinct function prototypes). Dual-register operands are
represented as pairs of i32 values. Because of this the instruction
selection for these intrinsics cannot be represented as TableGen
patterns and requires custom C++ code.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76296
Summary:
[Clang] Attribute to allow defining undef global variables
Initializing global variables is very cheap on hosted implementations. The
C semantics of zero initializing globals work very well there. It is not
necessarily cheap on freestanding implementations. Where there is no loader
available, code must be emitted near the start point to write the appropriate
values into memory.
At present, external variables can be declared in C++ and definitions provided
in assembly (or IR) to achive this effect. This patch provides an attribute in
order to remove this reason for writing assembly for performance sensitive
freestanding implementations.
A close analogue in tree is LDS memory for amdgcn, where the kernel is
responsible for initializing the memory after it starts executing on the gpu.
Uninitalized variables in LDS are observably cheaper than zero initialized.
Patch is loosely based on the cuda __shared__ and opencl __local variable
implementation which also produces undef global variables.
Reviewers: kcc, rjmccall, rsmith, glider, vitalybuka, pcc, eugenis, vlad.tsyrklevich, jdoerfert, gregrodgers, jfb, aaron.ballman
Reviewed By: rjmccall, aaron.ballman
Subscribers: Anastasia, aaron.ballman, davidb, Quuxplusone, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74361
This patch completes a trio of changes related to arrays of
sizeless types. It rejects various forms of arithmetic on
pointers to sizeless types, in the same way as for other
incomplete types.
Differential Revision: https://reviews.llvm.org/D76086
clang currently accepts:
__SVInt8_t &foo1(__SVInt8_t *x) { return *x; }
__SVInt8_t &foo2(__SVInt8_t *x) { return x[1]; }
The first function is valid ACLE code and generates correct LLVM IR
(and assembly code). But the second function is invalid for the
same reason that arrays of sizeless types are. Trying to code-generate
the function leads to:
llvm/include/llvm/Support/TypeSize.h:126: uint64_t llvm::TypeSize::getFixedSize() const: Assertion `!IsScalable && "Request for a fixed size on a s
calable object"' failed.
Another problem is that:
template<typename T>
constexpr __SIZE_TYPE__ f(T *x) { return &x[1] - x; }
typedef int arr1[f((int *)0) - 1];
typedef int arr2[f((__SVInt8_t *)0) - 1];
produces:
a.cpp:2:48: warning: subtraction of pointers to type '__SVInt8_t' of zero size has undefined behavior [-Wpointer-arith]
constexpr __SIZE_TYPE__ f(T *x) { return &x[1] - x; }
~~~~~ ^ ~
a.cpp:4:18: note: in instantiation of function template specialization 'f<__SVInt8_t>' requested here
typedef int arr2[f((__SVInt8_t *)0) - 1];
This patch reports an appropriate diagnostic instead.
Differential Revision: https://reviews.llvm.org/D76084
The SVE ACLE doesn't allow arrays of sizeless types. At the moment
clang accepts the TU:
__SVInt8_t x[2];
but trying to code-generate it triggers the LLVM assertion:
llvm/lib/IR/Type.cpp:588: static llvm::ArrayType* llvm::ArrayType::get(llvm::Type*, uint64_t): Assertion `isValidElementType(ElementType) && "Invalid type for array element!"' failed.
This patch reports an appropriate error instead.
The rules are slightly more restrictive than for general incomplete types.
For example:
struct s;
typedef struct s arr[2];
is valid as far as it goes, whereas arrays of sizeless types are
invalid in all contexts. BuildArrayType therefore needs a specific
check for isSizelessType in addition to the usual handling of
incomplete types.
Differential Revision: https://reviews.llvm.org/D76082
The SVE ACLE doesn't allow fields to have sizeless type. At the moment
clang accepts things like:
struct s { __SVInt8_t x; } y;
but trying to code-generate it leads to LLVM asserts like:
llvm/include/llvm/Support/TypeSize.h:126: uint64_t llvm::TypeSize::getFixedSize() const: Assertion `!IsScalable && "Request for a fixed size on a scalable object"' failed.
This patch adds an associated clang diagnostic.
Differential Revision: https://reviews.llvm.org/D75737
Summary:
The parsing of GNU C extended asm statements was a little brittle and
had a few issues:
- It was using Parse::ParseTypeQualifierListOpt to parse the `volatile`
qualifier. That parser is really meant for TypeQualifiers; an asm
statement doesn't really have a type qualifier. This is still maybe
nice to have, but not necessary. We now can check for the `volatile`
token by properly expanding the grammer, rather than abusing
Parse::ParseTypeQualifierListOpt.
- The parsing of `goto` was position dependent, so `asm goto volatile`
wouldn't parse. The qualifiers should be position independent to one
another. Now they are.
- We would warn on duplicate `volatile`, but the parse error for
duplicate `goto` was a generic parse error and wasn't clear.
- We need to add support for the recent GNU C extension `asm inline`.
Adding support to the parser with the above issues highlighted the
need for this refactoring.
Link: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
Reviewers: aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aheejin, jfb, nathanchance, cfe-commits, echristo, efriedma, rsmith, chandlerc, craig.topper, erichkeane, jyu2, void, srhines
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75563
clang accepts a TU containing just:
__SVInt8_t x;
However, sizeless types are not allowed to have static or thread-local
storage duration and trying to code-generate the TU triggers an LLVM
fatal error:
Globals cannot contain scalable vectors
<vscale x 16 x i8>* @x
fatal error: error in backend: Broken module found, compilation aborted!
This patch adds an associated clang diagnostic.
Differential Revision: https://reviews.llvm.org/D75736
It would be difficult to guarantee atomicity for sizeless types,
so the SVE ACLE makes atomic sizeless types invalid. As it happens,
we already rejected them before the patch, but for the wrong reason:
error: _Atomic cannot be applied to type 'svint8_t' (aka '__SVInt8_t')
which is not trivially copyable
The SVE types should be treated as trivially copyable; a later
patch fixes that.
Differential Revision: https://reviews.llvm.org/D75734
A previous patch rejected alignof for sizeless types. This patch
extends that to cover the "aligned" attribute and _Alignas. Since
sizeless types are not meant to be used for long-term data, cannot
be used in aggregates, and cannot have static storage duration,
there shouldn't be any need to fiddle with their alignment.
Like with alignof, this is a conservative position that can be
relaxed in future if it turns out to be too restrictive.
Differential Revision: https://reviews.llvm.org/D75573
clang current accepts:
void foo1(__SVInt8_t *x, __SVInt8_t *y) { *x = *y; }
void foo2(__SVInt8_t *x, __SVInt8_t *y) {
memcpy(y, x, sizeof(__SVInt8_t));
}
The first function is valid ACLE code and generates correct LLVM IR.
However, the second function is invalid ACLE code and generates a
zero-length memcpy. The point of this patch is to reject the use
of sizeof in the second case instead.
There's no similar wrong-code bug for alignof. However, the SVE ACLE
conservatively treats alignof in the same way as sizeof, just as the
C++ standard does for incomplete types. The idea is that layout of
sizeless types is an implementation property and isn't defined at
the language level.
Implementation-wise, the patch adds a new CompleteTypeKind enum
that controls whether RequireCompleteType & friends accept sizeless
built-in types. For now the default is to maintain the status quo
and accept sizeless types. However, the end of the series will flip
the default and remove the Default enum value.
The patch also adds new ...CompleteSized... wrappers that callers can
use if they explicitly want to reject sizeless types. The callers then
use diagnostics that have an extra 0/1 parameter to indicats whether
the type is sizeless or not.
The idea is to have three cases:
1. calls that explicitly reject sizeless types, with a tweaked diagnostic
for the sizeless case
2. calls that explicitly allow sizeless types
3. normal/old-style calls that don't make an explicit choice either way
Once the default is flipped, the 3. calls will conservatively reject
sizeless types, using the same diagnostic as for other incomplete types.
Differential Revision: https://reviews.llvm.org/D75572
This patch adds C and C++ tests for various uses of SVE types.
The tests cover valid uses that are already (correctly) accepted and
invalid uses that are already (correctly) rejected. Later patches
will expand the tests as they fix other cases.[*]
Some of the tests for invalid uses aren't obviously related to
scalable vectors. Part of the reason for having them is to make
sure that the quality of the error message doesn't regress once/if
the types are treated as incomplete types.
[*] These later patches all fix invalid uses that are being incorrectly
accepted. I don't know of any cases in which valid uses are being
incorrectly rejected. In other words, this series is all about
diagnosing invalid code rather than enabling something new.
Differential Revision: https://reviews.llvm.org/D75571
Summary:
This patch generalizes the existing code to support CDE intrinsics
which will share some properties with existing MVE intrinsics
(some of the intrinsics will be polymorphic and accept/return values
of MVE vector types).
Specifically the patch:
* Adds new tablegen backends -gen-arm-cde-builtin-def,
-gen-arm-cde-builtin-codegen, -gen-arm-cde-builtin-sema,
-gen-arm-cde-builtin-aliases, -gen-arm-cde-builtin-header based on
existing MVE backends.
* Renames the '__clang_arm_mve_alias' attribute into
'__clang_arm_builtin_alias' (it will be used with CDE intrinsics as
well as MVE intrinsics)
* Implements semantic checks for the coprocessor argument of the CDE
intrinsics as well as the existing coprocessor intrinsics.
* Adds one CDE intrinsic __arm_cx1 to test the above changes
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: simon_tatham
Subscribers: sdesmalen, mgorny, kristof.beyls, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75850
This adds infrastructure for a multiversioning whitelist, plus adds
'used' to the allowed list with 'target'. The behavior here mirrors the
implementation in GCC, where 'used' only applies to the single
declaration and doesn't apply to the ifunc or resolver.
This is not being applied to cpu_dispatch and cpu_specific, since the
rules are more complicated for cpu_specific, which emits multiple
symbols. Additionally, the author isn't currently aware of uses in the
wild of this combination, but is aware of a number of target+used
combinations.
GCC does not warn on casts from pointers to enumerators, while clang
currently does: https://godbolt.org/z/3DFDVG
This causes a bunch of extra warnings in the Linux kernel, where
certain structs contain a void pointer to avoid using a gigantic
union for all of the various types of driver data, such as
versions.
Add a diagnostic that allows certain projects like the kernel to
disable the warning just for enums, which allows those projects to
keep full compatibility with GCC but keeps the intention of treating
casts to integers and enumerators the same by default so that other
projects have the opportunity to catch issues not noticed before (or
follow suite and disable the warning).
Link: https://github.com/ClangBuiltLinux/linux/issues/887
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D75758
Summary:
It's basically Doxygen's version of a link and can happen anywhere
inside of a paragraph. Fixes a bogus warning about empty paragraphs when
a parameter description starts with a link.
Reviewers: gribozavr2
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D75632
When an implicitly generated decl was the first entry in the group, we
attempted to lookup comments with an empty FileID, leading to crashes. Avoid
this by trying to use the other declarations in the group, and then bailing out
if none are valid.
rdar://59919733
Differential revision: https://reviews.llvm.org/D75483
Verifies that an argument passed to __builtin_frame_address or __builtin_return_address is within the range [0, 0xFFFF]
Differential revision: https://reviews.llvm.org/D66839
Re-committed after fixed: c93112dc4f
Compute and propagate conversion kind to diagnostics helper in C++
to provide more specific diagnostics about incorrect implicit
conversions in assignments, initializations, params, etc...
Duplicated some diagnostics as errors because C++ is more strict.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74116
Summary:
Clang's "asm goto" feature didn't initially support outputs constraints. That
was the same behavior as gcc's implementation. The decision by gcc not to
support outputs was based on a restriction in their IR regarding terminators.
LLVM doesn't restrict terminators from returning values (e.g. 'invoke'), so
it made sense to support this feature.
Output values are valid only on the 'fallthrough' path. If an output value's used
on an indirect branch, then it's 'poisoned'.
In theory, outputs *could* be valid on the 'indirect' paths, but it's very
difficult to guarantee that the original semantics would be retained. E.g.
because indirect labels could be used as data, we wouldn't be able to split
critical edges in situations where two 'callbr' instructions have the same
indirect label, because the indirect branch's destination would no longer be
the same.
Reviewers: jyknight, nickdesaulniers, hfinkel
Reviewed By: jyknight, nickdesaulniers
Subscribers: MaskRay, rsmith, hiraditya, llvm-commits, cfe-commits, craig.topper, rnk
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69876
The diagnostic added in D72231 also shows a diagnostic when casting to a
_Bool. This is unwanted. This patch removes the diagnostic for _Bool types.
Differential Revision: https://reviews.llvm.org/D74860
For tag typedefs like this one:
/*!
@class Foo
*/
typedef class { } Foo;
clang -Wdocumentation gives:
warning: '@class' command should not be used in a comment attached to a
non-struct declaration [-Wdocumentation]
... while doxygen seems fine with it.
Differential Revision: https://reviews.llvm.org/D74746
Summary:
As @rsmith notes in https://reviews.llvm.org/D73020#inline-672219
while that is certainly UB land, it may not be actually reachable at runtime, e.g.:
```
template<int N> void *make() {
if ((N & (N-1)) == 0)
return operator new(N, std::align_val_t(N));
else
return operator new(N);
}
void *p = make<7>();
```
and we shouldn't really error-out there.
That being said, i'm not really following the logic here.
Which ones of these cases should remain being an error?
Reviewers: rsmith, erichkeane
Reviewed By: erichkeane
Subscribers: cfe-commits, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73996
Use the more accurate location when emitting the location of the
function being called's prototype in diagnostics emitted when calling
a function with an incorrect number of arguments.
In particular, avoids showing a trace of irrelevant macro expansions
for "MY_EXPORT static int AwesomeFunction(int, int);". Fixes PR#23564.
Converting a pointer to an integer whose result cannot represented in the
integer type is undefined behavior is C and prohibited in C++. C++ already
has a diagnostic when casting. This adds a diagnostic for C.
Since this diagnostic uses the range of the conversion it also modifies
int-to-pointer-cast diagnostic to use a range.
Fixes PR8718: No warning on casting between pointer and non-pointer-sized int
Differential Revision: https://reviews.llvm.org/D72231
Summary:
Zero-parameter K&R definitions specify that the function has no
parameters, but they are still not prototypes, so calling the function
with the wrong number of parameters is just a warning, not an error.
The C11 standard doesn't seem to directly define what a prototype is,
but it can be inferred from 6.9.1p7: "If the declarator includes a
parameter type list, the list also specifies the types of all the
parameters; such a declarator also serves as a function prototype
for later calls to the same function in the same translation unit."
This refers to 6.7.6.3p5: "If, in the declaration “T D1”, D1 has
the form
D(parameter-type-list)
or
D(identifier-list_opt)
[...]". Later in 6.11.7 it also refers only to the parameter-type-list
variant as prototype: "The use of function definitions with separate
parameter identifier and declaration lists (not prototype-format
parameter type and identifier declarators) is an obsolescent feature."
We already correctly treat an empty parameter list as non-prototype
declaration, so we can just take that information.
GCC also warns about this with -Wstrict-prototypes.
This shouldn't affect C++, because there all FunctionType's are
FunctionProtoTypes. I added a simple test for that.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D66919
whether a call is to a builtin.
We already had a general mechanism to do this but for some reason
weren't using it. In passing, check for the other unary operators that
can intervene in a reasonably-direct function call (we already handled
'&' but missed '*' and '+').
This reverts commit aaae6b1b61,
reinstating af80b8ccc5, with a fix to
clang-tidy.
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
Summary:
The 'z' length modifier, signalling that an integer format specifier
takes a `size_t` sized integer, is only supported by the C library of
MSVC 2015 and later. Earlier versions don't recognize the 'z' at all,
and respond to `printf("%zu", x)` by just printing "zu".
So, if the MS compatibility version is set to a value earlier than
MSVC2015, it's useful to warn about 'z' modifiers in printf format
strings we check.
Reviewers: aaron.ballman, lebedev.ri, rnk, majnemer, zturner
Reviewed By: aaron.ballman
Subscribers: amccarth, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73457
whether a call is to a builtin.
We already had a general mechanism to do this but for some reason
weren't using it. In passing, check for the other unary operators that
can intervene in a reasonably-direct function call (we already handled
'&' but missed '*' and '+').